IDT

Software Development Kit, 32 and 64 bit

This page is intentionally left blank)

Software Release
2.16.01

Document Revision
December 2020

Products Information
www.idtvision.com

North America

1 West Mountain Street, Suite #3
Pasadena, CA 91103

United States of America

P: Local: (+1) 626-521-5470

P: Toll-Free: (+1) 833-241-6361
F: (+1) (626) 316-7503

Europe

via Pennella, 94

I-38057 - Pergine Valsugana (TN)
Italy

P: (+39) 0461- 510522

Eekhoornstraat, 22
B-3920 - Lommel
Belgium

P: (+32) 11- 551065
F: (+32) 11- 554766

Copyright © Integrated Design Tools, Inc.

The information in this manual is for information purposes only and is subject to change
without notice. Integrated Design Tools, Inc. makes no warranty of any kind with regards to
the information contained in this manual, including but not limited to implied warranties of
merchantability and fitness for a particular purpose. Integrated Design Tools, Inc. shall not be
liable for errors contained herein nor for incidental or consequential damages from the
furnishing of this information. No part of this manual may be copied, reproduced, recorded,
transmitted or translated without the express written permission of Integrated Design Tools,

Inc.

http://www.idtvision.com/

IDT Cameras SDK

Table of Contents

1. OVERVIEW.......iiiiiiiccsssnrn s ssssss s s s s smnnn s s s s s s s smmmnn s s s s nnnnes 10
1.1. DIrectories SITUCIUIE.........cooii i 11
IV U o] oTo] (=To I o= 4 1= =T 3 12
1.3. Redistributable Files.......... i e 13
1.4. Camera calibration file distribution (XS, XS-Stick, PCle, M).........ccccccooveeeeennn. 15

2. USING THE SDK.......e s s 16
D T O 1= oV 1= PP 16

2.1.1. Programming LanQUAgES.........cooeiiiiiiiiiiiieeieeee e e e e e et s e e e e e e e e e e e e e e e e a e 16
2.1.2. 64 Bit ProgramimMing.........coooo ittt ee e et e e e e s st e e eeeeeeeeeeeeenneae 17
2.1.3. MAC OSX Programming.........c.ueeeeeeiiueeeeeeeiiieeeeeesaiieeeeesansieeeeessasseeeeessansseesssssennes 17
R R T Y/ o1 USROS 17
205, EXAMPIC. ..o e e e e e e e e aaeas 18
2.2. Detecta camera and open it...........coiiiiiiiiii i 20
2.2.1. Load/UnIoad the driVer...........oocuiiiiiiieiiie ettt 20
2.2.2. Enumerate/Open @ CAMEIA.........cccccuuiiiiiiiieieeeee e e e e e e e e e e e e e e e e aaae e 20
2.2.3. Camera pre-Configuration.............ooi i 21
2.2.4. Camera SPEEA Grades........ccuuiiiiuuiiieeeiiiiiiee e ettt ee e e e sttt e e e et e e e e ettt e e e e e eeeeeeeaeaaeae 24
2.2.5. Camera misC Capabilities.oocuuiiiiiiiiii e 27
2.3. Camera CONfIGUIALION.........uueiiiiiiiiiie e 28
2.3.1. Read/Write the camera configuration..............ccoiiiiiiiii e 28
2.3.2. Read/Write in camera flash Memory..........ccooiiiiiiiiiii e 29
2.4, Camera PAramMeLerS........coooiiiiiiiiiiiiieie aaaas 30
2.4.1. Frame rate @nd ©XPOSUIE.ccceuiiuuuiieeeeiiieieeeeaatteeeeesaatteeeeeesasteeeeeeaabeeeeaesaaneensnnes 30
A S b (= o L=Y o 1 3 U 30
2.4.3.1MAGE QUAIYeeeeeeee i e e e e e e 31
2.4.4. White Balance / Color BalanCe...........ooooiiiiiiiiiiiiee e 33
2.4.5. Resolution and Region of Interest (ROI).........coooiiiiiiiii 34
P ST S (=TeTo] (o l o 4o T [T S TP PPPR 35
2.4.7. SYNchronization MOAES.ccoiiiiii i e e e 36
P T I T To =14 o o TP 37
2.4.9. SYNC OUL MOAES. ... euiiiiiiiiiiiiie ettt e e e st e e e e sttt e e e e s steaeeeeeeeeeeeeeeeeeeeesesnnnes 37
2.4.10. PIXEI GaIN..cciitiiiiiiii et 38
2.4.11. LOOK-UP Table (LUT)...ieiieiiiiieiie ettt 39
2.4.12. AUTO-EXPOSUIE.cceeie ittt et e et e e e e e e e e e s e e e e et aeaeeeeeeeaaaaeaeesesaaaaanssnressanesnrannas 40
2.4.13. HDMI/SDI output and Video MOdesS...........ccueiiiiiiiiieiiiiiiie e 42
A o = 13T o 1oV PP PRPPPPPPP 43
2.5. Image Grab in camera or computer DDR.............oooiiiiiiiie e 44
2.5.1. ASYNCRIONOUS LIVE......iiiiiiii it 44
2.5.2. SYNCIIONOUS LIVE......oiiiiiiiiiiiiii ettt e e eeeeaeees 45
2.5.3. Image Grab in Camera MEMOIY..........uiiiiiiiiiiee et 46
2.5.4. Multiple Acquisitions in CamMeEra MEMOIY........cciuieiiiiii i e e e 48
2.5.5. Image Grab in computer memory (streaming Cameras).........ccccceeevcvvereeeeiciveeeeennn. 50
2.5.6. Read images acquired in normal or circular mode............ccccuuviiiiiiiiiiiaiiniiiineeeeees 51
2.6. Image grab in camera SSD..........oooiiiiiiiiii e 52
2.6.1. SSD BaCKUP MOUE.......eiiiiiiiiiiieie ettt e et e e e e e e e e e e s anneeees 52
2.6.2. SSD Streaming MOTE......ccooiiuiiiiiiei ittt e e et e e e eeneeeeeeeeee 54
2.6.3. Read images from SSD..........uiiiiiiiiiiiee ettt 56
2.7. Image Streaming to disk (streaming cameras)..........ccccccceeeeeieeiiieeeeeeiieeeeeeee, 58
2.8. RAW files and virtual Cameras............ccuuuiiieiiiiiiiiiee et 59
2.8.1. Virtual CamMEIas.ceiiiiiiiiiiie ettt ettt e e eeeeeae 59

4 Reference Manual

IDT Cameras SDK

2.8.2. Save data in RAW fOrmMat.........coooiiiiiiiie et e e e e nneeeees 60
2.8.3. Read data from RAW filES........cooiiiiiiiiie e 61
2.9. MISCEIIANEOUS.ciii it e e e e e e e e e e e e e e enans 63
2.9.1. Bayer mode in COIOr CAMEIaSs.........cccciiiiiiieieiiiieee e e e e e e e e e e eaeas 63
2.9.2. Read data from @ BROGC SESSION......c.cciiuuuiiiiiiiiiiiiieeiriiieee e e eieeee e 64
2.9.3. IRIG/GPS dat@......ccccuriiiie ettt aaaaes 65
2.9.4. MotOrized LENS SUPPOIT......eiiiiiiiiiiieeeiitiiiee ettt e ettt e e e e s st eeeeeeeeeeeeeeeseeeeennene 66
2.9.5. Camera calibration (Background and PSC).............coviiiiiiiiiiii 67
2.10. LEJACY CAMEIAS.cii ittt et et e e e e e e 69
2.10.1. Enumerate and Open X cameras (GE)..........cccccooiiiiiiiiiiiiiiiieeeeeeeeeee 69
2.10.2. ASYNChIroNOUS OPEIratiONS........uiieieeeeeeeieee ettt e e e e e e e e e e e e e e e eeeae e e e e e eeanas 71
2.10.3. N cameras memory management (Non Pipeling)...........cccvveeeeiiiiieeeieiieiiiiiie e, 72
2.10.4. Trigger and Sync in cameras with two BNC.............ccooiiiiiiii 72
2.710.5. PIUS™ MOGE.........ccutteiiee e it e ettt e e et e e e ettt e e e e et e e e e s seabaeeeseeeeeeeeeeeeeeesnesnenes 73
2.710.6. XDR™ MOGE.......utiiiieiiiiiiiee e e ittt e e e e ettt e e e e ettt e e e e settaeeeeessbaaeeaessasbaeeeaessessseneneenes 73
3. SDK REFERENCE...........o e rrrrcesss s s e s s s s s s s s e e s s e e nnan 74
3.1, Initialization FUNCLIONS...........ouiiiiii e 74
3.1.1. Overview: Initialization fUNCHONS...........cooiiiiiiie e 74

K B €1 € 1= V=T] o] o TSP 75

K Tt R T 1 0= To | D4/~ P 76
Tt Y [o= To | 4 =Y U PERRRREPPPS 77
Tt R Y = 10T [O7= T3 0 =T = TR 78
3.1.6. XSPreConfiglamera..........uiiiiiiiiii e 79

T B AR (1@ T o =Y o 107 o 1= TR 80
3.1.8. XSOPENRAWCAMEIA. ...ttt e e et eeeennnnns 81
3.1.9. XSCIOSECAMEIA. ... ettt e e e e e e e e e e e e e et e e eeeeeaaaaaeaaaeeees 82
3.2. Configuration FUNCLONS...........oooiiiiiicciece e 83
3.2.1. Overview: Configuration funCtiONS.............ooiiiiiiiiiiii s 83
3.2.2. XSGEtCameEralNfO........cuiiiiieee et e e eaee 84
3.2.3. XSSetCameralnfO......coii i 85
3.2.4. XsReadDefaultSettings.cuueiii i 86
3.2.5. XsReadCameraSettings.cuuuiiiiiiiiiiee e 87
3.2.6. XsRefreshCameraSettings.ccoovi i 88
3.2.7. XsValidateCameraSettingsS.cvuiiiiiiiiiiiie e e e e e e 89
3.2.8. XsReadSettingSFromFIash.............cooiiiiiiii i 90
3.2.9. XsWriteSettingSTOFIash. ...t 91
3.2.10. XsQuUeUECameraSettingsS.cccuuiiieriiiiiiie et e e e e 92
3.2.11. XSSetParameter.........cooiiiiiiiiie e 93
K L €T =T = 10 0= (=T PSPPI 94
3.2.13. XsGetParameterAtribULE...........coo e 95
3.2.14. XsCalibrateNoiSERedUCHION..........ccoeiiiii i 96
K ST (=T PR 97
3.2.16. XsReadUserDataFromFlash...............ouuiii e 98
3.2.17. XsWriteUserDataToFIash........ .o 99
3.2.18. XsReadCameraSettiNngSAITAYu et e e 100
3.3. Preview Mode Grab FUNCLIONS..........cuiiiiiiiiiiieiee e 101
3.3.1. Overview: Preview Mode Grab functions...........cccccveviiiiiiiii i 101
3.3.2. XSSYNCNGIAD... ..ot aa e e e e 102
3.3.3. XsQueueOneFrame (deprecated)..........coocuiiiiiiiiiiiiiie e 103

K I < I V= TP 104
TR RS T =Y Y o T o SRR 105
3.4. Camera Memory Grab FUNCLONS...........ccoooiiiiiiiiiiee e, 106
3.4.1. Overview: Camera Memory Mode Grab functions...........ccccoeecviveiiiiiiieeneee e, 106

Reference Manual 5

IDT Cameras SDK

3.4.2. XsMemoryStartGrab..........ccuuiiiiiiiiie e 107
3.4.3. XSMeEMOTYSIOPGIab.......ueiiiieiiiiiiie ettt e e e e et e e e e e e e e eeeeeeeeeeeeeeeenees 108
3.4.4. XSMEMOIYPIEVIEW......cci ittt ettt s s e e e e e e e e e e e e e e et e e e eaaaeaes 109
3.4.5. XsMemoryReadFrame..........cccooi it 110
3.4.6. XsMemoryDownloadRawWFrame.............ceeeviiiiieieiiiiiiicciiiieeeee et 111
3.4.7. XsMemoryRead TriggerPOSItioN............oooiiiiiiiiiiie e 112
3.4.8. XsGetAddressList (N-SEIES).....ccccuiiiiiiieiiiiiiie e 113
3.4.9. XSEraSEMEMOIY.....ooiiiiiiiiiiie ettt e e e e e 114
K L G I T o =T TP 115
3.4.11. XSGetBroCParameters.uuueiiiiiiiiiieeie et 116
3.4.12. XsMemoryReadFromDISK..........oocuuiiiiiiiiiiiee e 117
3.4.13. XSEraSEDISK....cceiieiiiee e 118
3.5. Miscellaneous FUNCLIONS............ouiiiiiiiiee e 119
3.5.1. Overview: Miscellaneous fuNCIONS..........c..eiiiiiiiiiiie e 119
3.5.2. XSGetHardwar€EITOr..........oooi it 120
3.5.3. XSREadGPSTIMING.....cciiiiiiiice et e e e e e e e e e e e e eaaes 121
3.5.4. XsENableDiagnosStiCTracCe.........ccoiiiiiiiiiiiicee et e e e e e 122
3.5.5. XSENADIERAWMOGE..........cuiiiiiiiiiiiieee et e e e e e e e e e e aaeaees 123
3.5.6. XSGetCameraStatus........cccuuviiiiiiiiiie e 124
3.5.7. XsSetAnnouncementCallbackccccuuiiiiiiiiiiiiieee e 125
3.5.8. XsReadBorderData (HG).........cuueeiiiiiiiiiiee et 126
3.5.9. XSAMACK. ...t e e e e e e e 127
3.5.10. XsConfigureWrteTODISK..........ceiiiiiiiiiiii i 128
3.5.11. XSREAATOVIAEO.eeiiiieiieeee et e e e e e e e e e e e e 129
3.5.12. XsLoadLooKUPTaDIE.......c.coooiieece e 130
3.5.13. XSVIdEOPIAYDACK. e 131
4. LABVIEW™ INTERFACE REFERENCE...........o e 132
g I @ V=T =PRSS 132
4.2, INItialiZation VIS.....couuiiiiiiee s 133
4.2.1. Overview: INitialization VIS..........cooiiiiiiiie e 133
A = 04 O 41T = L R 134
R B O o=l 0= 03 1= - TP 135
4.2.4. 0PN RAW CAMEIa...ciii ittt s e e e e e e e e e e e 136
S T O (o T - o= - 137
4.3. ConfIQUIation VIS.........uuiiiiieiiieeiie et 138
4.3.1. Overview: Configuration VIS.............eeeeeiiiiiiiiiiiiii et 138
I B 1= [o1 J 139
4.3.3. Get Parameter.......cooiuuiiiiie it 140
4.3.4. SEEPAraMELEr.....ceeeeiiiiiiee e a e 141
RS I T= 10 To I O] o T PR 142
4.4. Camera Memory AcqUISItioN VIS.........oooiiiiiiiiiieeeee e 143
g B O 1YY V11 OSSR 143
4.4.2. SYNCN Grab ...t 144
4.4.3. Memory STart Grab.........coouiiiiiii 145
4.4.4. Memory StOP Grab..... ... e 146
4.4.5. Memory Grab REAAY.........ccouiiiiiiiei ittt et a e 147
4.4.6. MEMOTY PreVIEW....coi ittt e e e e e e e e e e e e e e e e eatan e e e aaaes 148
4.4.7. Memory Read Data...........oooouiiiiiiiiiii e 149
4.4.8. Memory Read Trigger POSItION.coiieiiii e 150
4.4.9. MEMOIY EFASE......coo ittt e e e e e e e e e e e e e eereaaaae s 151
4.4.10. Get BROC Parameters...........uuiiiiiiiiiiiiie ettt e 152
I Iy T T 1= PP 153
T \V 11T o= | F=T =T o TH =TV P 154

6 Reference Manual

IDT Cameras SDK

4.5.1. Overview: Miscellan@ous VIS.........c..uuiiiiiiiiiiiie ittt a e e 154
45,2, RSBt e e e e 155
4.5.3. Read GPS TimMiNG......ccoiiiiiiiteeeee et e e e e e e e e e e 156
R T g F= o] (SN D TT- Vo R I = Vo = 157
4.5.5. IMAgE TO PICIUIE.....eeeiiiiiiiee e e e e e e e e e e e 158
T T 7= =y o] 159
4.6. HOW o USE the VIS .. oo 160
4.6.1. Opening and ClOSING @ CAMEIA.......ciiiuuiiiieeiiie et 160
4.6.2. CoNfiQUING @ CAMEIA.......ciiiiiiiiiiie ettt e e e e e b e e e e as 160
4.6.3. Acquiring images in real tiMe.........c.uuiiii e 160
4.6.4. Acquiring images in CamMEera MEMOIYouiuuririee e e et e e e e e e e e e e e e e e e 160
TR T =Yy (o] ol g F= 1 [o |11 T SR 160
S T- 11 4] o] (T T PPN 162
O A O T =Y o 10 o (I 07T 4 1= = T TR 162
4.7.2.2_get Camera_iNfO.......oocuuiiiiiiiiiee s 162
4.7.3. 3 IMAGE_IIVE....ciiiiiiieiii et 162
4.7.4.4 image_live_error_ChECK.........uuueiiiiiiiiie et e e 162
4.7.5.5 image_live_with_parameters..........coooi e 162
T 0 =T T Y= Yoo [0TSR 162
O A B A 1111 PP TP PSPPSR 162
4.7.8.8 0PEN_TaW_filE....ccoiiiiiiiieeeeee e 163
5. MATLAB™ INTERFACE REFERENCE.............ccoiiiirrinrnnnnsnneneeeneenes 164
B4 OVEBIVIEW. ...ttt e e e e e e e e e e e e e e e e eeeaeeeeeaeeeeeas 164
5.2, Initialization FUNCHONS.........ooiiiiie e 165
5.2.1. Overview: Initialization fUNCHIONS............ccoiiiiiii e 165
5.2.2. VBISION. ...ttt ettt 166
5.2.3. SetNetAdapterlPAAress.ooiii e 167
5.2.4. ENUMECAMEIAS.....ciiiiieieiiie ettt ettt e e e e e e e e e e s e e e e e e e aaaaeeeeeasanennnaeeeeeeeenes 168
5.2.5. INIPCIEMEMOIY.....coiiiiiie e 169
5.2.6. OPENCAMEIA. ...ttt e e et e e e e e e e e e e e e e e e e e aaaaaaaaas 170
5.2.7. OPENRAWCAMEIA.ceiiiiiiieee ettt eeeannaaeeeaaeeees 171
IV S B O [11T 0= 1o =T - TR 172
5.3. Configuration fUNCHIONS...........uuuiiiiii e 173
5.3.1. Overview: Configuration funCtionNS.............eoviiiiiiiiii i 173
5.3.2. GetCameralnfo.......cccoi i 174
5.3.3. GetParameter.........cooi i 175
5.3.4. SetParameter........ocuiiiiiiii e 176
TR T 0o (03 o TR PP 177
5.4. Camera Memory Acquisition FUNCLIONS............ccccoiiiiiiiiiiiiieecceeeeeee 178
5.4.1. Overview: Camera Memory Acquisition Functions..............ccccccc s 178
B5.4.2. SYNCRGIAD.....cciiiiiiiie e e 179
5.4.3. MemMOryStartGrab..........c.uuiiiiiiiiiiiee et e e e e e e e e e e e e e e eaeaaee 180
5.4.4. MemMOTYSIOPGIaD........ciiiiiiiiic et e e e e e e e e e e e e e e 181
5.4.5. MEMOIYPIEVIEW.oiiiiiiiiiieie e e e e ettt s e e e e e e e e e e e et et e ae e e e e e et e eeesnnaeeees 182
5.4.6. MeMOryREAADALA.ueeiiiiiiiiiee et a e e e e e e aaaaan 183
5.4.7. MemoryDownloadRaWFrame.ooiiiiiiiiieeeieeeeeee e 184
5.4.8. MemoryReadTriggerPOSItioN...........coiiiiiiiiiiiiiiei et 185
5.4.9. MEMOIYETASE......ci ittt et e e 186
5.4.10. GetBroCParameters.cooo i 187
5.4.11. GrablSREAY........cooiiiiiiii e 188
oI N D2 I 4 o T T PP PP PPPPP 189
5.5. Miscellaneous FUNCLIONS.uuuiiiiiiie e 190
5.5.1. Overview: Miscellaneous FUNCHONS............coccuiiiieiiiiiiiee e 190

Reference Manual 7

IDT Cameras SDK

B8, 2. RES Bt eeaa 191
5.5.3. REAdGPSTIMING.....cciitiiiieei ittt e et e e e e st e e e e e e e e e aaaaaaaeeees 192
5.5.4. EnableDiagnoStiCTIaCe.c.cuuuiiiiiiiee et e e e e et e e e e 193
5.6. How to program with the Interface functions...........c.cccccciiiiiiiiiiiiiii e, 194
5.6.1. Opening and ClOSING @ CAMETA.........cueiiiiiiieeeeee e e e 194
5.6.2. CoNfigUIiNg @ CAMEIa......ouuiiiiie ittt ettt e et e e e s et e e e e aneeenee 194
5.6.3. Previewing images in real time...........oooiiiiiiiiii e 194
5.6.4. Acquiring images in Camera MEMOTY..........eeieiiiuiiieeeeiiieeeeeeeatieeeeeseaneeeeeeeereeneane 194
5.6.5. Error handliNg.........cooi oo 194
.7 EXAMPIES... .o 195
5.7 CAMERNUML....eiii e 195
5.7.2. CamMGELINTO......ciiiiiii i 195
AR T 0= 14 01 2= T= To | = =T o TN 195
B.7.4. CamImageSNap.ceei it a e e e e e 195
5.7.5. CamRECANASAVE. ...ttt e e e e e e e e e e e e e e e e e eeennan 195
B5.7.6. CAMLIVEREC.ci ittt e e e e e e eeaees 195
5.7.7. CamMRAWREAM.......oooiiiiiiiee e e e 195
6. RAW READER LIBRARY. ... s 196
T B O 1YY VS 196
6.2. Program Interface Reference............ccueveiiiiiiiee e 197
B.2.1. XIGEIVEISION. ... ettt e e e e e e e e e e e e e e e e as 198
B.2.2. XIOPEN..c.coieiiee et e reaaaaas 199
B.2.3. XICIOSE. ... tteiie e e ittt ettt e e e ettt e e e e ettt e e e e et tete e e e e e tteeeeeeaanbaeeeeeeeanennrnnnes 200
oI (o =T To | 0] o TSP 201
6.2.5. XrReadAdvanCedInfO..........ocuiiiiiiiiiie e 203
6.2.6. XrREAAFTAME. ...t 204
A 2 2 =11] 205
7.1. Appendix A - RetUrn COdES........ccoiiiiiiiiii e 205
7.2. Appendix B — Hardware Error Codes.........cccooeeiieeiiiiiiiiiiiiccceee e, 206
7.3. Appendix C — Information Parameters............cooouviiiiiiiiiiiiiie e, 207
7.4. Appendix D — Camera Parameters.ccooiiiiei e 211
7.5. Appendix E — Camera ANNOUNCEMENTS.uuuuuiiiiiieeeeeeeeiiie e 217
7.6. AppendiX F — Data tyPesS.uuuuiiiiiiiiiiiiee e 219
7.6.1. XS_CAM_MODEL..... .ottt ettt ettt eee et e et e tee e e e eenneeeaeeannneeeeas 219
7.8.2. XS_ENUM _FLT ..ttt ettt et e st e st e e e s emnaee e e e emnneeaen 220
7.6.3. XS_LINK _TYPEottt ettt e emee e s e e saeeenneeeeeas 221
7.8.4. XS_SNS _TYPE.... ittt ettt ettt e et e e e s enae e e e e e naneeaen 221
7.6.5. XS_CFA_PATTERN.ottt e e e naeeee s 221
7.8.8. XS_FG _TYPE. ... ettt ettt ettt sae e e eneesneeeeens 222
7.6.7. XS_SNS_MODEL......ctititiiitie ittt e s naeeee s 222
7.6.8. XS_REVISION... ..ottt ettt ettt e et e e 222
7.8.9. XS_MISC_CAPS ...ttt e ettt s 223
7.6.10. XS_PRE_PARAM.......coooiieiieeeeeeeeeee e 223
7.8. 11, XS_STATUS ...ttt ettt e et e st e s rte e s raeeteeanteesnteesneeentaeeaenas 224
7.68.12. XS_EXP_IMODBE.......oo ittt ettt ettt et e st e s e e e e e nnnneea e 224
7.6.13. XS_REC_MODE........ooiiiiieiie ettt ettt etee et saee et et e sneesnnneeaeas 225
7.6.14. XS_SYNCIN_CFG... ettt ettt ettt e e see e saeeeae e e e s annneeeeeas 225
7.6.15. XS_SYNCOUT_CF Gttt ettt saee e e enee e e aneeeae e 225
7.6.16. XS_SYNCOUT_ALIGN. ..ottt ettt e et naeeee s 226
7.6.17. XS_TRIGIN_CFG... ettt ettt sttt ettt e e e e e e e ennneea e 226
7.6.18. XS_MTRIG _CF Gttt ettt e et e e e nneeee e 226
7.8.19. XS_IMG _FIMT ...ttt ettt ettt e st e e et e e e e nneneeeen 226

8 Reference Manual

IDT Cameras SDK

7.6.20. XS_CI_MODE.......ooii ittt 227
7.6.21. XS_SENSOR _GAIN.....ootiiiiiiii ettt ettt e e e e e e e e e e anaes 227
7.6.22. XS_PIX_GAIN .. .ottt ettt e st e e et e e ssae e e snbaeeensaeeennnees 227
IS T €S T U USRS 227
7.6.24. XS_LUT _MASKcoiiiiiieiiit ettt ettt e stee e et e e steeessae e e e e e e e e e e nsnnneees 228
7.6.25. XS _BINNING.ottt e e e e e e e e e e e e e e eeeeeeeasnnaaeaaeenes 228
7.6.26. XS_HDMI_MODE........ooi ottt e e 228
7.6.27. XS_VIDEO _MODE........cuoiie et 228
7.8.28. XS _VIDEO PBi....oooiieeee ettt e e e e e 229
7.6.29. XS _PREV_MODE........cotiiiiteie ettt et 229
7.8.30. XS _LIVE. ... o oottt ettt a e e 229
7.6.31. XS_CALLBACK _FLAGS.......ooi ittt ettt 229
7.6.32. XS_CALIB_OPCODE........cciiitiiieiee ettt e e e e e 229
7.8.33. XS_DGR_SIZE.......cc oottt ettt et e et a e e e e e e e 230
7.8.34. XS_ PR _OP... ittt ettt ettt ettt a e st e et e e e naaes 230
7.6.35. XS_MARKER_CFG....coiiiiiieiiie ittt ettt e e e e e e e e s s nnnnnees 230
7.6.36. XS_CLOCK _SPEED.........coiiiiiie ittt ettt et a e stae e s ense e e snaeeennnnes 230
7.8.37. XS _HD ROt 230
7.8.38. XS _HD _ZOOM......ooiitiie ettt e e et e e e e e e e e e e 231
7.6.39. XS _ROT _ANGLE ..o 231
T.8.40. XS _FLIP...oeeeeeeee et e 231
7.6.41. XS_ATTRIBUTEoi ittt e a e e e e e 232
T.8.42. XS _JPEGottt ettt 232
7.6.43. XS_BATTERY ..ottt ettt e e e s 232
7.6.44. XS_LENS _INFO.....cooiiieiie ettt e e e 232
7.6.45. XS_LENS_CMD......coiiiiiiiie ittt ettt ettt e s e e e e nnees 232
7.6.46. XS_ERROR......coitiiiiiie ettt ettt st e et e e s n e e e e e e e e e e e nnnnaees 233
AR €S T 1\ O T SRR 233
7.6.48. XS_PARAM.ttt ettt e e st et e e et e et e e e e e e e anreees 233
7.7. Appendix G — SIrUCIUIES.......ccoeiieieeeecee e e 234
TT A XS _SETTINGS ...t e e e 234
T.7.2. XS _ ENUMITEM. ...ttt et 235
T.T7.3. XS _FRAMEco ettt e 239
7.7.4. XS BROC _SECTION......ciitiiiiiiie ettt ettt ettt e s eaae e e e e e e e 240
T.7.5. XS _BROC....... ittt ettt et 241
7.7.6. XS_GPSTIMING........ooiiiiiiiiitie ettt ettt eree e e e e e e e 242
T.T.7.XS_W2DCFG..... ittt ettt e e st e sba e e e eabe e e srae e e nnres 243
7.7.8. XS_ASYNCCAIIDACK.ccceiiiiiiiiiee ittt e e ee e e s sntae e e e e s eneeeees 244
7.7.9. XS_ProgressCallDackK...........ccuuuiiiiiiiiiieeee e 245
7.7.10. XS_AnnouncementCallbacK............eeeiiiiieeeeiiii i 246
7.7.11. XS_StreamingCallbackK............uuuueiiiiiiiiiieeeii e 247

Reference Manual 9

IDT Cameras SDK

1. Overview

The on-line documentation of the Software Development Kit and its components is
divided into the following parts:

Using the SDK

This section describes how to start using the Software Development Kit.
SDK Reference

This section contains a detailed description of the SDK functions.
LabVIEW™ |nterface Reference

This section contains a detailed description of the camera LabVIEW ™ ViIs.
MATLAB™ Interface Reference

This section contains a detailed description of the camera MATLAB™ Drivers.
RAW Reader Library

This section contains a detailed description of the RAW Reader library.
Appendix

This section provides additional information about data structures, parameters, error
codes and return codes.

10 Reference Manual

IDT Cameras SDK

1.1. Directories structure

The default installation directory of the SDK is
“C:/Program Files (x86)/IDT/CameraSDK V1.V2.V3”

where v1.v2.v3 is the current SDK version. The directory contains a set of sub-directories:

BIN/Win32: it contains 32-bit binary files (drivers, INF, DLLs) that can be re-distributed
with the camera and 32-bit applications.

BIN/x64: it contains 64-bit binary files (drivers, INF, DLLs) that can be re-distributed with
the camera and 64-bit applications.

BIN\x64\DriverPCI: it contains setup files for the installation of the PCI drivers for X-
Stream PCle cameras (1440p and 720p).

BIN\x64\DriverUSB: it contains setup files for the installation of the USB 2.0 drivers for X-
series and Y-series cameras, and for the MotionPro Timing Hub.

BIN\x64\DriverXSRT: it contains setup files for the installation of the Xstream-RT drivers
for XS-Mini cameras.

DOCS: it contains the SDK documentation and the camera specifications manual.

INCLUDE: it contains the SDK header files (H, VB, BAS, C#, PY), helpers and misc
header files.

LabVIEW: it contains the LabVIEW™ examples (VIs) and a copy of the drivers for manual
install (manual_install.pdf).

LIB: it contains the SDK lib files (32 and 64-bit) for dynamic linking.

MATLAB/x64: it contains the 64-bit MATLAB™ drivers and examples (32 bit version is
not supported anymore).

MCfgFiles: it contains the M-series camera configuration files for Sapera, National
Instruments and Bitflow frame grabbers.

SOURCE/VC: it contains the Visual C++ examples (MSVC 2008, 2010, 2017).

SOURCE/VCH#: it contains Visual C# examples (MSVS 2017).

Reference Manual 1"

IDT Cameras SDK

1.2. Supported cameras

The Software development Kit supports the following camera models:

N, NR, NX-series, R-series, O-series and Os-series (GE).
CC cameras (Crash Cams), CC-Mini and CC-Stick (GE).

X-Stream PCle cameras (720p and 1440p), XS-Mini and XS-Stick (Thunderbolt
3/PCl).

Y-series (USB + GE).

M-series (Camera Link with frame grabbers support).
Legacy X-Stream XS (USB).

Legacy MotionPro HS (USB) and MotionPro X (USB + GE).

Redlake cameras (HG-100K, HG-LE, HG-XR, HG-TH, HG-CH, HG-2000, CR-2000,
HG-TX (GE only).

The 32-bit and 64-bit versions of the SDK have some differences. Some of the cameras
are not fully supported as reported in the table below.

Camera Link Win32 x64
N/NR/NX/O/Os/CC/CCM/R Giga-Ethernet Yes Yes
X-Stream PCle PCle 2.0 and 3.0 No Yes

XS Mini, XS-Stick Thunderbolt 3/PCle No Yes
MotionPro Y USB 2.0, Giga-Ethernet Yes Yes
MotionScope M Camera-Link Yes Yes
X-Stream XS, MotionPro HS/X USB 2.0 Yes Yes
MotionPro X Giga-Ethernet Yes No

Redlake cameras Giga-Ethernet Yes Yes

12

Reference Manual

IDT Cameras SDK

1.3. Redistributable Files

This section outlines the options available to third-party vendors for distributing camera
drivers for Windows XP/Vista/7/8 and 10. The files that can be redistributed are in the
BIN/Wi32 and BIN/x64 sub-directory of the installation directory (C:\Program
Files\IDT\CameraSDK v1.v2.v3).

USB 2.0 drivers for X and y cameras (DriverUSB).

File Windows XP/Vista/7/8/10
Xstream.inf C:\WINDOWS\INF
Xsusbdrv.sys C:\WINDOWS\SYSTEM32\DRIVERS

X-Stream PCle camera drivers (Bin/x64/DriverPCl).

File Description
PciDriver.inf INF file
pciDriver.sys Kernel driver
pciDriver.cat Catalog file

W(dfCoinstaller01009.dll Support DLL

Dynamic linking libraries (the files may be copied to any directory that can be accessed
by the third-party software).

File Description
XStreamDrv.dll SDK main interface driver
ImageFmts.dll Support for SDK main driver
GraphMIib.dll Support for Y/HG cameras and JPEG encoding
XsPortUSB.dlIl, XsPortGE.dlI USB 2.0 and GE Port drivers for HS/X
CyCamVideoRecorder.dll,

CyDispExLib.dll, CyMediumLib.dll,

CyEngineLib.dll, CyCamLib.dl, Support for MotionPro X GE Port Driver

CylmgLib.dll, CyComLib.dll, (32-bit only)
CyUtilsLib.dll
XsPortYUSB.dIl, XsPortYGE.dII USB 2.0 and GE Port drivers for Y
XsPortNGE.dII GE Port driver for N/NR/NX/Os/CC
XsPortCL.dll, XsPortNlI.dll, Camera-Link Port drivers for M (frame grabber
XsPortBF.dIl XsPortEP.dII drivers required)
XsPortPCIX.dll PCle driver for X-Stream
XsPortHG.dII HG cameras Port driver
XsPortRL.dlI Port driver for Redlake Legacy cameras
XsPortRAW.dII Port Driver for Virtual camera (RAW files)

Reference Manual 13

IDT Cameras SDK

14

LibH264dec.dll

Library for decoding the H264 frames

Openh264.dli

Library for deconding the H264 frames

The table below lists the camera files for M-Series and National Instruments IMAQ. The
files should be copied to the NI-IMAQ Data folder.

File

Description

“IDT MotionScope M3.icd”

M3 camera configuration file for NI-IMAQ

“IDT MotionScope M5.icd”

M5 camera configuration file for NI-IMAQ

The table below lists the camera files for M-Series and Sapera LT Library (Dalsa-Coreco
frame grabber). The files should be copied to the Windows System32 folder.

File Description
M3.ccf M3 camera configuration file for Sapera
M5.ccf M5 camera configuration file for Sapera

The table below lists the camera files for M-Series and Bitflow SysReg (Bitflow frame

grabber).

File

Description

IDT-M3-FreeRun.r64

M3 camera configuration file for Bitflow

IDT-M5-FreeRun.r64

M5 camera configuration file for Bitflow

The setup files in the directories Bin\x64\DriverPCl and Bin\x64\DriverUSB can be

distributed with the cameras.

Reference Manual

IDT Cameras SDK

1.4. Camera calibration file distribution (XS, XS-Stick, PCle, M)

Some IDT camera models (XSM, XS-Stick, M-series) require that the calibration file is
stored on the local hard disk. The default location of calibration files directory is

“‘“COMMON_DOCUMENTS”/IDT/CameraFiles

The value of “COMMON_DOCUMENTS” depends on the operating system. The name is
also stored in the “IDTCOMMON” system variable that is created when the SDK is
installed.
The directory name may be also changed as below:
Create the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\IDT\MotionProX
Then create the following string value:

CalibrationFileDirectory

In the string value write the full path to the directory where the calibration file is stored.

Os, NR, NX and latest Y and N cameras store the calibration file in the internal
storage area (flash memory) and do not require that the calibration file is locally
stored.

HG cameras do not require any calibration file.

Reference Manual 15

IDT Cameras SDK

2.

Using the SDK

2.1. Overview

2.1.1. Programming Languages

16

A C/C++ header file is included in the SDK (XStrmAPLh file in the Include sub-directory).

Most compiled languages can call functions; you will need to write your own
header/import/unit equivalent based on the C header file.

Visual Basic modules are included in the SDK (XStrmAPl.bas file in the Include sub-
directory and XstrmAPLvb for VB.NET and later). VB cannot use XsQueueOneFrame or
XsQueueCameraSettings or related functions, because these functions have callbacks
which occur on a different thread. If you want to use VB, you might need to write some C
code depending on your application's requirements. The same issue with asynchronous
callbacks, above, also applies to Java.

The Windows driver is a DLL (XStreamDrv.dll) that resides in Bin/Win32 directory. The 64
bit version may be found in the Bin/x64 directory.

MS Visual C++™: A Visual C++ 6.0 stub COFF library is provided (XStreamDrv.lib or
XStremDrv64.lib in the Lib sub-directory); if you are programming with Visual C++, link
your application to XStreamDrv.lib. The DLL uses Windows standard calling conventions
(_stdcall).

Borland C++ Builder™: the XStreamDrv.lib file is in COFF format. Borland C++ Builder
requires the OMF format. To convert the library into to OMF format, run the IMPLIB
Borland tool with the following syntax: “IMPLIB XStreamDrv.lib XStreamDrv.dIl”.

Other compilers: the Most other compilers can create a stub library for DLLs. The DLL
uses Windows standard calling conventions (_stdcall).

MS Visual C#: the XsCamera.cs file has been added to the include folder (for 32 and 64
bit). It wraps the APlIs into a C# class.

Python: the XsCamera.py file has been added to the Include folder. It wraps the API into
a python interface.

Reference Manual

IDT Cameras SDK

2.1.2. 64 Bit Programming

The Visual C++ stub COFF library for 64-bit programming is the XStreamDrv64.lib file,
stored in the LIB sub-directory of the SDK.

One of the main issues in migrating software from 32 bit to 64 bit platforms is the size of
types.

An “int” and a “long” are 32-bit values in on 64-bit Windows operating systems. For
programs that you plan to compile for 64-bit platforms, you should be careful not to assign
pointers to 32-bit variables. Pointers are 64-bit on 64-bit platforms, and you will truncate
the pointer value if you assign it to a 32-bit variable.

For this reason, the parameters of the XsPreConfigCamera routine have been converted
into “void pointers”. In some conditions, the parameters of the routine are pointers to char
buffers, and then in a 64-bit environment a 32 bit “long” parameter is not enough.

2.1.3. MAC OSX Programming

When you install the SDK on MAC OSX the framework “XstreamDrv.framework” is
installed in /Libraries/Frameworks. It contains the APl header file (Headers/XstrmAPI.h)
and the libraries that you need to integrate the IDT cameras in your project.

X-Code: to include the IDT cameras SDK framework into your project, , choose Project >
Add to Project and select the framework directory. Alternatively, you can control-click your
project group and choose Add Files > Existing Frameworks from the contextual menu.
When you add an existing framework to your project, Xcode asks you to associate it with
one or more targets in your project. Once associated, Xcode automatically links the
framework against the resulting executable.

QT-creator: to include the IDT Cameras SDK framework to your QT project, add the
following line to your .pro file.

LIBS +=/Libraries/Frameworks/XStreamDrv.framework/XStreamDrv

21.4. Types

Some types have been defined in the SDK to allow the use of the file XStrmAPLh in
different platforms. See the table below:

Type MS C++ compiler Other Compilers
XSULONG32 (32 bit unsigned integer) | unsigned long unsigned int
XSLONG32 (32 bit signed integer) long int
XSUINT64 (64 bit unsigned integer) unsigned __int64 unsigned long long
XSINT64 (64 bit signed integer) __int64 long long

Reference Manual 17

IDT Cameras SDK

2.1.5. Example

A simple program would use the following sequence of routine calls to capture images
from a camera. The routines and the parameters used in this example are explained in
the following topics.

#include "XstrmAPI.h"
#include <stdio.h>
#include <time.h>
#include <malloc.h>
#include <memory.h>

int main(int argc, char* argvl[])
{
XS_ENUMITEM xs1[10];
XSULONG32 nEnumFlt, nListLen = sizeof (xsl)/sizeof (XS_ENUMITEM) ;
XSULONG32 nSnsType, nW, nH, nPD, nValHi, nImgSize;
XS HANDLE hCamera;
XS SETTINGS xsCfg;
unsigned char *pBuf;

// Load the driver
XsLoadDriver (0) ;

// find Y, N or Os cameras in the GE network
nEnumFlt = XS EF GE Y|XS EF GE N;

// nListLen is the length of your XS ENUMITEM array
XsEnumCameras (&xsl[0], &nListLen, nEnumFlt);

// nListLen is now the number of cameras available.

// It may be larger than your XS ENUMITEM array length!
if (nListLen== || xs1[0].bIsOpen==1) return O;

// Open the first camera in the list.
XsOpenCamera (xsl1l[0] .nCamerald, &hCamera);

// read the configuration

xsCfg.cbSize = sizeof (XS_SETTINGS); // Don't forget this!!!
XsReadCameraSettings (hCamera, &xsCfg);

// set exposure to 1 ms and the fps to 100 (T = 10 ms)
XsSetParameter (hCamera, &xsCfg, XSP EXPOSURE, 1000000);
XsSetParameter (hCamera, &xsCfg, XSP_PERIOD, 10000000);

// Get the info about image and set pixel depth
XsGetCameraInfo(hCamera, XSI SNS TYPE, &nSnsType, &nValHi);
XsGetParameter (hCamera, &xsCfg, XSP ROIWIDTH, &nW);
XsGetParameter (hCamera, &xsCfg, XSP ROIHEIGHT, &nH);

if (nSnsType==XS ST COLOR) nPD = 24;

else nPD = 8;

XsSetParameter (hCamera, &xsCfg, XSP PIX DEPTH, nPD);

// set the rec mode to normal

XsSetParameter (hCamera, &xsCfg, XSP REC MODE, XS RM NORMAL) ;

// Send settings to the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

// Allocate image memory

nImgSize = nW*nH*nPD/8;

pBuf = (unsigned char *)malloc (nImgSize);
memset (pBuf, 0, nImgSize);

18 Reference Manual

IDT Cameras SDK

XSULONG32 nAddLo, nAddHi, nBusy, nSts;
int 1i;

// read the live offset and use it as start address
XsGetCameraInfo (hCamera,XSI LIVE BUF SIZE, &nAddLo, &nAddHi) ;
// start the acquisition (do not install any callback)
XsMemoryStartGrab (hCamera, nAddLo,nAddHi, 100, 0,NULL,0,0) ;

time t now, cur;
time (&now) ;
cur = now;
while(difftime (cur,now)<3.)
{
nBusy = nSts = 0;
XsGetCameraStatus (hCamera, &nBusy, &nSts, 0,0,0,0) ;
if (nBusy==0 &¢&
nStS!=XSST_REC_PRETRG && nSts!=XSST_REC_POSTRG)
break;
// calculate time
time (&cur) ;
}
// read 10 frames
for (i=0;1<10;i++)
{
XsMemoryReadFrame (hCamera, nAddLo, nAddHi, i, pBuf);
}
// free the memory
free(pBuf);
// Close the camera
XsCloseCamera (hCamera);
// Unload the driver
XsUnloadDriver () ;

return 0O;

// poll the status until the recording is OK (time out = 3 sec)

Reference Manual

19

IDT Cameras SDK

2.2. Detect a camera and open it

2.2.1. Load/Unload the driver

The first call into the driver must be XsLoadDriver. Call XsUnloadDriver when you are
finished.

If the parameter nUSBNotify is set to 0, the driver will not notify any disconnection of the
USB cable. If the parameter is set to 1, the notification is enabled.

2.2.2. Enumerate/Open a camera

To get the list of available cameras, call XsEnumCameras. Use the nCamerald field of
the camera list in your call to XsOpenCamera. Below a simple example of opening the
first available Y, N or O Ethernet camera.

XS ENUMITEM xs1[10];

XSULONG32 nEnumFlt, ListLen = sizeof (xsl)/sizeof (XS _ENUMITEM) ;
XSULONG32

// Load the driver
XsLoadDriver (0) ;

// find Y, N or Os cameras in the GE network
nEnumFlt = XS EF GE_Y|XS _EF GE_NO;

// nListLen is the length of your XS ENUMITEM array
XsEnumCameras (&xsl1l[0], &nListLen, nEnumFlt);

// nListLen is now the number of cameras available.
// It may be larger than your XS ENUMITEM array length!
If (nListLen>0 && xs1[0].bIsOpen==FALSE)
{
XS HANDLE hCamera;
// Open the first camera in the list.
XsOpenCamera (xsl[0].nCamerald, &hCamera);
// Do something...

// Close the camera.
XsCloseCamera (hCamera);

}

// Unload the driver
XsUnloadDriver () ;

The camera list contains a unique ID which identifies the camera. The ID must be used to
open the camera and retrieve the camera handle.

Then the camera handle must be used to call any other routine of the SDK.

20 Reference Manual

IDT Cameras SDK

2.2.3. Camera pre-configuration

Some camera or system may be configured before opening a camera. Some of those
“pre-configuration” parameters are system-specific, some are camera-specific. The
routine is XsPreConfigCamera.

System parameters

XSPP_DB_FOLDER: it specifies the database folder used to enumerate “virtual” raw
file cameras. The Camera ID field is ignored.

XSPP_NET_AD_IP: the IP address of the computer network adapter connected to
the cameras network. The driver uses the IP address to send the enumeration
command only to the selected network. If the value is set to default (OXFFFFFFFF)
the driver sends the enumeration command to any network adapter installed on the
local computer. If the IP address of the adapter connected to the cameras network is
known, it should be used to configure the XSPP_NET_AD_IP and avoid to send the
enumeration command to the wrong network. The Camera ID field is ignored.

XSPP_DISABLE_1024: the parameter is valid for each camera. If it's enabled, Y4,
N4, NX4 and Os4 cameras maximum resolution is set to 1016x1016. The Camera ID
field is ignored.

XSPP_NET_ADD_CMD_PORT: deprecated.

Camera parameters

XSPP_IP_ADDRESS: the camera IP address. Call the routine with this parameter if
you want to modify the camera IP address before opening the camera. The Camera
ID parameter can be retrieved in the enumeration procedure.

XSPP_CAM_DFL_GW: it specifies the camera default gateway. The value may be
changed if two sub network are involved.

XSPP_GET_IP_ADDRESS: this value is used to read the IP address from HG
cameras. It is useful when the camera is connected through the DCU port and the
user wants to know the actual camera IP address. The Camera ID value is retrieved
in the enumeration procedure.

XSPP_PCIX_DMASIZE: the value configures the size of the DMA buffer used by the
camera to acquire images in the computer memory. The value units are MB.

XSPP_IP_ADD_EX: deprecated.
XSPP_CAM_CMD_PORT: deprecated.

The table below shows the meaning of the nValueLo and nValueHi for each value of

nParamKey.

XS_PRE_PARAM nCameralD nValueLo nValueHi
XSPP_IP_ADDRESS Camera ID unsigned int unsigned int
XSPP_NET_AD_IP Not used unsigned int Not used
XSPP_IP_ADD_EX Camera MAC add unsigned int Not used
XSPP_CAM_CMD_PORT Camera ID unsigned int Not used
XSPP_NET_AD_CMD_PORT | Not used unsigned int Not used

Reference Manual

21

IDT Cameras SDK

22

XSPP_GET_IP_ADDRESS

Camera IP add

unsigned int*

unsigned int*

XSPP_DB_FOLDER Not used char* Not used
XSPP_CAM_DFL_GW Camera ID unsigned int Not used
XSPP_DISABLE_1024 Not used unsigned int Not used
XSPP_REBOOT_FW Camera ID Not used Not used
XSPP_PCIX_DMASIZE Not used unsigned int Not used

The code below shows how to configure the driver to use a specific network adapter.

#define IP_SET (al,a2,a3,a4)

XSULONG32 nIPAdd;

// Load the driver
XsLoadDriver (0) ;

((al<<24)+(a2<<1l6)+(a3<<8)+(ad))

// we assume that we have detected the network adapter IP
// address and it's value is 192.168.0.2
nIPAdd = IP SET(192,168,0,2);

// configure the driver to set the network adapter by its

// IP address

// convert the parameter into
XsPreConfigCamera (0, 0,XSPP_NET AD IP, (void*)nIPAdd,O0);

// Unload the driver

XsUnloadDriver () ;

(void~*)

The camera IP address must be compatible with the IP address of the computer network
adapter connected to the camera network.

Example: if the network adapter IP address is 192.168.0.2 and the sub-net mask is
255.255.255.0, then the cameras IP addresses should be 192.168.0.N (where N may be
from 3 to 253). The formula to detect is a camera IP address is compatible with the
network adapter IP address is below.

(NetAdpIPAdd & NetAdpSNMask) = (CameralPAdd & NetAdpSNMask)

The code below shows how to configure the IP address of a camera with an address that
is is compatible with the network adapter's IP address.

Reference Manual

IDT Cameras SDK

#define IP_SET (al,a2,a3,a4) ((al<<24)+(a2<<16)+(a3<<8)+(ad))

XS ENUMITEM xsl1l[107;

XSULONG32 nEnumFlt, ListLen = sizeof (xsl)/sizeof (XS ENUMITEM) ;

XSULONG32 nIPAdd, nSNMask;

// Load the driver

XsLoadDriver (0) ;

// find Y, N or Os cameras in the GE network

nEnumFlt = XS EF GE_Y|XS_EF GE N;

XsEnumCameras (&xsl[0], &nListLen, nEnumFlt);

// set the IP address of first enumerated camera

nIPAdd = IP SET(192,168,0,100);

nSNMask = IP_SET(255,255,255,0);

// convert the parameter into (void*)

XsPreConfigCamera ((void*)x1s[0] .nCamerald, XSPP_IP ADDRESS,
(void*)nIpAdd, (void*)nSNMask) ;;

// Unload the driver

XsUnloadDriver () ;

Reference Manual

23

IDT Cameras SDK

2.2.4. Camera speed grades

24

The camera speed grade is reported in the “nSubModel” field of the XS_ENUM structure.
The table below shows the existing values of speed grade for the IDT camera models.

Legacy cameras

Camera Model Sub-Model Notes

X-Stream cameras | all 0 Not used

HS cameras all 0 Not used

X cameras all 0 Not used

M3/M5 XS_CM_MP_M3/M5 0 Not used

HG legacy all 0 Not used
HG-100K XS_CM_HG_100K 0 1504x1128
HG-XR XS_CM_HG_100K 1 1504x1128
HG-XL XS_CM_HG_100K 2 1504x1128
HG-LE XS_CM_HG_LE 0 752x1128

HG-TH XS_CM_HG_TH 0 752x564

HG-CH XS_CM_HG_TH 1 752x564

Y cameras

Camera Model Sub-Model Resolution/Notes
Y3-classic XS_CM_MP_Y3 0 1280x1024

Y3-S1 XS_CM_MP_Y3 1 1280x1024

Y3-S2 XS_CM_MP_Y3 2 1280x1024

Y3-HD XS_CM_MP_Y3 3 1920x1080 (discontinued)
Y4-S1 XS_CM_MP_Y4 1 1024x1024

Y4-S2 XS_CM_MP_Y4 2 1024x1024

Y4-S3 XS_CM_MP_Y4 3 1024x1024

Y5 XS_CM_MP_Y5 0 2336x1728

Y5-HD XS_CM_MP_Y5 1 H-Diablo (discontinued)
Y6 XS_CM_MP_Y6 0 1504x1128

Y7-S1 XS_CM_MP_Y7 1 1920x1080

Y7-S2 XS_CM_MP_Y7 2 1920x1080

Y7-S3 XS_CM_MP_Y7 3 1920x1080

Y8-S1 XS_CM_MP_Y8 1 1600x1200

Y8-S2 XS_CM_MP_Y8 2 1600x1200

Y8-S3 XS_CM_MP_Y8 3 1600x1200

Reference Manual

IDT Cameras SDK

N/NR/NX cameras

Camera Model Sub-Model Notes

N3 XS_CM_MP_N3 0 Old N3 model (1280x1024)
N3-S1 XS_CM_MP_N3 1 1280x1024
N3-S2 XS_CM_MP_N3 2 1280x1024
N3-S3 XS_CM_MP_N3 3 1280x1024
N3-S4 XS_CM_MP_N3 4 1280x1024
N4 XS_CM_MP_N4 0 Old N4 model (1016x1016)
N4-S1 XS_CM_MP_N4 1 1024x1024
N4-S2 XS_CM_MP_N4 2 1024x1024
N4-S3 XS_CM_MP_N4 3 1024x1024
N5-S1 XS_CM_MP_N5 1 2336x1728
N5-S2 XS_CM_MP_N5 2 2336x1728
N7-S1 XS_CM_MP_Y7 1 1920x1080
N7-S2 XS_CM_MP_Y7 2 1920x1080
N8-S1 XS_CM_MP_Y8 1 1600x1200
N8-S2 XS_CM_MP_Y8 2 1600x1200
Os cameras

Camera Model Sub-Model Notes
Os4-S1 XS_CM_MP_0O4 1 1024x1024
Os5-4K XS_CM_MP_0O5 1 3840x2160
Os7-S1 XS_CM_MP_O 1 1920x1296
Os7-S2 XS_CM_MP_O 2 1920x1296
Os7-S3 XS_CM_MP_O 3 1920x1296
Os8-S1 XS_CM_MP_O 1 1600x1200
Os8-S2 XS_CM_MP_O 2 1600x1200
Os8-S3 XS_CM_MP_O 3 1600x1200
Os8-S4 XS_CM_MP_O 4 1600x1200
0Os10-4K XS_CM_MP_O 0 3840x2400
CrashCam and CC-Mini cameras

Camera Model Sub-Model Notes
CC1060 XS_CM_CC_1060 0 1024x1024
CC1520 XS_CM_CC_1520 0 1440x1024
CC1540 XS_CM_CC_1540 0 1440x1024
CC4010 XS_CM_CC_4010 0 2560x1600

Reference Manual 25

IDT Cameras SDK

26

CrashCam mini cameras

Camera Model Sub-Model Notes
CCM1510 XS_CM_CC_M1510 0 1440x1024
CCM1520 XS_CM_CC_M1520 0 1440x1024
CCM3510 XS_CM_CC_M3510 0 2560x1440
CCM-3525 XS_CM_CC_M3525 0 2560x1440
CC-Stick XS_CM_CC_STICK 0 1920x1536
CCM-5K05 XS_CM_CC_M5K05 0 5120x2880
R-series

Camera Model Sub-Model Notes
R-2K XS_CM_R_2K 0 2048x1088
PCle/XS-Mini

Camera Model Sub-Model Notes
PCle 720p XS_CM_PCIE_X7 0 1280x720
PCle 1440p XS_CM_PCIE_X14 0 2560x1440
XSM-1540 XS_CM_XSM_1540 0 1440x1024
XSM-3520 XS_CM_XSM_3520 0 2560x1440
XSM-4KV XS_CM_XSM_4KV 0 3840x2880
XSM-5K XS_CM_XSM_5K 0 5120x2880
XS-Stick XS_CM_XSM_STICK 0 1920x1536

Reference Manual

IDT Cameras SDK

2.2.5. Camera misc capabilities

The camera capabilities are reported in the “nMiscCaps” field of the XS_ENUM structure.
table below shows the description of the misc capabilities bits.

Field Value Description

XS_CAP_NR 0x00000001 | The camerais an NR

XS_CAP_NX 0x00000002 | The camera is an NX

XS _CAP_NXT 0x00000004 | The camera is an NXtra

XS_CAP_NXA 0x00000008 | The camera is an NX-Air

XS_CAP_DNR2 0x00000010 | The camera supports DNR

XS_CAP_HWBROC |0x00000020 |The camera supports hardware BROC

XS_CAP_JPEG 0x00000040 |The camera supports JPEG encoding

XS_CAP_1PPS 0x00000080 | The camera supports 1PPS protocol

XS_CAP_BATSTS 0x00000100 |The camera has battery status (NX-Air only)

XS_CAP_FBCAM 0x00000200 | The camera is an FB camera (custom project)

XS_CAP_PIV 0x00000400 |The camera has a PIV module (Y only)

XS_CAP_OS 0x00000800 | The camera is an Os (not O)

XS_CAP_GPSMOD |0x00001000 |The camera has an internal GPS module

XS_CAP_INX 0x00002000 |The camera is an iNdustrial

XS_CAP_JPLROC 0x00004000 |The Camerais a JPL ROC model

XS_CAP_PTP 0x00008000 | The camera supports the PTP protocol

XS_CAP_IS1024 0x00010000 | If this bit is 1, the camera is an N/NR or NX and supports
the 1024x1024 resolution, if it's 0 the maximum resolution
of the camera is 1016x1016.

XS_CAP_0OS3 0x00020000 |The camera is an OS Version 3 (not used)

XS_CAP_OSA 0x00040000 | The camerais an OS Version 3 Airborne

XS_CAP_PLL 0x00080000 | The camera supports Phase Lock Loop modes

XS_CAP_IRIGMD 0x00100000 |The camera has an internal IRIG module

XS_CAP_SDI_FW 0x00200000 | The camera has a special firmware for SDI output

XS_CAP_OSTRM 0x00400000 |The camera is OStreaming

Reference Manual

27

IDT Cameras SDK

2.3. Camera configuration

The camera configuration is stored in the opaque XS_SETTINGS structure. The structure
is used to read and write parameters from/to the camera.

2.3.1. Read/Write the camera configuration

28

Before any other operation, the user should fill the XS_SETTINGS structure with valid
data and synchronize the structure with the camera.

The parameters are written to the structure through the XsSetParameter routine and
read through the XsGetParameter routine. The function XsGetParameterAttribute
provides information on a parameter's range and whether the parameter is read-only or
not.

Read the default configuration: the example below shows how to read the default
configuration, change the exposure and send the configuration to the camera.

XS SETTINGS xsCfg;
xsCfg.cbSize = sizeof (XS _SETTINGS) ; // Don't forget this!

// Read default settings from the camera.
XsReadDefaultSettings (hCamera, &xsCfg);

// Change xsCfg: set exposure to 1 ms.
XsSetParameter (hCamera, &xsCfg, XSP EXPOSURE, 1000000);

// Send settings to the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

Read the camera current configuration: the example below shows how to read the
default configuration, change the exposure and send the configuration to the camera.

XS SETTINGS xsCfg;
xsCfg.cbSize = sizeof (XS_SETTINGS) ; // Don't forget this!

// Read current settings from the camera.
XsReadCameraSettings (hCamera, &xsCfg);

// Change xsCfg: set exposure to 1 ms.
XsSetParameter (hCamera, &xsCfg, XSP EXPOSURE, 1000000);

// Send settings to the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

Not all parameters are supported by all cameras. When you query or set a parameter (or
get the parameter maximum/minimum) and that parameter is not supported, the error
code XS E NOT SUPPORTED is returned.

Validate a configuration: the The XS_SETTINGS structure may be validated with a call
to the XsValidateCameraSettings routine.

Reference Manual

IDT Cameras SDK

2.3.2. Read/Write in camera flash memory
Giga-Ethernet cameras are supplied with a 256/512 MB flash memory. The flash memory
contains important information, such as the calibration file and the camera settings. A
portion of the flash memory may be used as storage area for user data. For that purpose,
two routines have been added to the program interface.

XsReadUserDataFromFlash: reads a buffer of user data from the flash memory user
area.

XsWriteUserDataToFlash: writes a buffer of user data to the flash memory user area.

The user must supply a unique ID to both the routines. The ID is a “signature” that let the
driver identify the user data block.

NOTE: M-Series cameras, MotionPro HS cameras and X-Stream XS cameras do not
have the on-board flash memory module.

Reference Manual 29

IDT Cameras SDK

2.4. Camera parameters

2.4.1. Frame rate and exposure

Exposure and frame rate are the first parameters that should be configured before
recording. The frame rate is configured through its inverse (the acquisition period).

Parameter Description
XSP_EXPOSURE | The exposure or integration time in nanoseconds
XSP_PERIOD The inverse of the frame rate in nanoseconds (frame period)

The formulas for converting the frame rate into the period is shown below

nFps = (int)(1000000000./(double)nPeriodNS + 0.5);

The formula below shows how to convert the frame rate into nanoseconds

nPeriodNS = (int)(1000000000./(double)nFps + 0.5);

2.4.2. Pixel depth

The pixel depth parameter controls the format of the image (XSP_PIX_DEPTH). See the

table below:
Value Image format
8 8 bit monochrome/Bayer (1 byte per pixel)
9,10,11,12 16 bit monochrome (2 bytes per pixel)
24 24 bit color (3 bytes per pixel)
27,30,33,36 48 bit color (6 bytes per pixel)

The pixel depth may be also set with the XSP_IMG_FORMAT parameter (see below)

XSP_IMG_FMT Pixel Depth
XS_IF_GRAY8, XS_IF_BAYERS 8
XS_IF_GRAY16, XS_IF_BAYER16 9,10, 11, 12
XS_IF_BGR24 24
XS_IF_BGR48 27, 30, 33, 36

30

Reference Manual

IDT Cameras SDK

2.4.3. Image quality

Image quality improvement is achieved with the configuration of some of the camera
parameters. A list of those parameters is shown below:

CFA (Color Filter Array) interpolation (deprecated)

The parameters XSP_CI_MODE (color interpolation mode) and XSP_CI_THR (color
interpolation threshold) control how the Bayer data is converted into the RGB space. If the
mode is set to XS_CIM_BILINEAR the threshold is ignored. If the mode is set to
XS_CIM_ADVANCED the threshold controls the sharpness of the conversion (a value of
0 corresponds to a very sharp image with possible noise known as "worm" effect, while a
value of 255 corresponds to a softer image similar to the bi-linear algorithm.

Optimal values: XSP_CI_MODE = XS_CIM_ADVANCED, XSP_CI|_THR = 64.

TNK (Temporal Noise Killer)

The parameter XSP_DYNAMIC_NR controls the time-dependent noise reduction filter.
Each pixel value is compared with the same pixel value in images acquired before and
after and the result is used to eliminate the noise the component of noise that is not a
fixed pattern. The parameter is not supported on all cameras (see the
XSI_TNR_SUPPORT) The value of this parameter should be set to 24 and never
changed.

Optimal value: XSP_DYNAMIC_NR =24

DNR (Dynamic Noise Reduction)

The parameter XSP_DYNAMIC_NR2 controls the space noise reduction filter. Each pixel
is compared to a set of surrounding pixels in the same image and used to reduce noise.
The result is a better uniformity in flat parts of the image. The parameter is not supported
on all cameras (see the XSI_DNR2_SUPPORT) The value of this parameter should be
set to 3 and never changed.

Optimal value: XSP_DYNAMIC_NR2 = 3

Sharpening

The parameter XSP_SHARPEN (sharpening value) controls the overall strength of the
sharpening effect and the parameter XSP_SHARPEN_THR (sharpening threshold)
controls the minimum brightness change that will be sharpened. This can be used to
sharpen more pronounced edges, while leaving more subtle edges untouched. It's
especially useful to avoid sharpening noise.

Optimal values: XSP_SHARPEN = 2 XSP_SHARPEN_THR = 25
Gaussian (Anti-alias, Blur) Filter
The parameter XSP_GAUSS_FLT controls the strength of the smoothing effect on the

image. The effect is a reduction of image noise and a reduction of details due to the
blurring.

Optimal value: XSP_GAUSS FLT =0

Saturation (XSP_SATURATION)

Reference Manual 31

IDT Cameras SDK

32

This parameter is applied to color images only. It affects the color saturation. The range is
from O to 20. The default value is 10. A value of 0 converts the color image into gray
scale. An optimal value for this parameter is 12.

Other image quality parameters are shown in the table below.

Parameter Range |Default | Notes

XSP_GAIN Oto2 0 Actual gain values are 1.00, 1.41, 2.00. Some
old cameras supports value 3, corresponding
to gain 2.82.

XSP_GAMMA 1t040 |10 Default corresponds to unity gamma

XSP_BRIGHTNESS [0to 50 |25 Default corresponds to unity brightness

XSP_CONTRAST (0020 10 Default corresponds to unity contrast

XSP_HUE 0to 360 |180 Applied to color images. The range is from
-180 to 180 (degrees).

Important note: recent cameras are shipped with values of default image parameter that
have been optimized during the calibration process. The code below shows how to
retrieve those values. Once read, the values should be stored and used.

XS_SETTINGS xsCfg;

XSULONG32 nTNK,

// Read default settings from the camera.
sizeof (XS SETTINGS) ; // Don't forget this!
XsReadDefaultSettings (hCamera,

xsCfg.cbSize =

// read and save default

XsGetParameter (
XsGetParameter (
XsGetParameter (
XsGetParameter (
XsGetParameter (
XsGetParameter (

nDNR, nGaus, nSharp, nSharpTH, nSat;

optimal values

hCamera, &xsCfg, XSP DYNAMIC NR, &nTNK);
hCamera, &xsCfg, XSP_DYNAMIC NR2, &nDNR);
hCamera, &xsCfg, XSP SHARPEN, &nSharp);
hCamera, &xsCfg, XSP SHARPEN THR, &nSharpTH);
hCamera, &xsCfg, XSP GAUSS FLT, &nGauss);
hCamera, &xsCfg, XSP SATURATION, &nSat);

&xsCfg)

Reference Manual

IDT Cameras SDK

2.4.4. White Balance / Color Balance

A 9x9 matrix may be applied to RGB space to correct the colors. The array values are in
16.16 format (16 bits for integer, 16 bits for decimal).

The formulas for the conversion from double into 16.16 integer are shown below:
nintValue = (unsigned int)(dDblValue * 65536.);
dDblValue = ((double)nintValue) / 65536.;

The parameters involved in color balance are XSP_WB_11 to XSP_WB_33 (see below).

Bout XSP_WB_11 XSP_WB_12 XSP_WB_13 Bin
Gow ° XSP_WB_21 XSP_WB_22 XSP_WB_23 | X | G
Ro XSP_WB_31 XSP_WB_32 XSP_WB_33 Rin

The diagonal values may be set to correct the white balance (XSP_WB_11, XSP_WB_22
and XSP_WB_33).

Reference Manual 33

IDT Cameras SDK

2.4.5. Resolution and Region of Interest (ROI)

All the IDT cameras support region of interest. The user may select an area of the sensor
with some limitations. The area width must be a multiple of 16 or 32 pixels (depending on
sensor), the height must be a multiple of 4 pixels.

The sensor supports vertical windowing and the camera cuts the image to match the
configured ROI. See the picture below.

l Confiaured ROI Area (red) ‘

\(Actual ROI Area (vellow) ‘

s

The picture shows the full sensor area (black rectangle), the ROI area configured by the
user (red rectangle) and the actual ROl area configured on the camera (yellow rectangle).
The sensor is not able to select the red area and acquires the images in the yellow area.
The camera extract the red area and stores it in camera memory.

For this reason, the maximum frame rate changes only if the vertical resolution changes.
Extended resolutions

Some cameras have a set of extended resolutions that may be configured with the
XSP_HD_ROI parameter. Some of those resolutions are made by up sizing a region of
the sensor (U), some by downsizing a larger region of it (D). Each value of the
XS _HD_ROI parameter has a different meaning according to the camera model. The
table below shows the supported resolutions.

Index Y3C/N3S1-S2 Y5/NR5/NX5 Os5 Os10

0 1920x1080 (U)
1280x720 (D)

Y3-HD

1504x1128 (U)

2560x1920 (U)

2560x1440 (D)

2560x1600 (D)

2560x1440 (U)

1920x1080 (D)

2560x1440 (D)

2560x1080 (U)

1280x720 (D)

1920x1080 (D)

1
2
3
4
5

1280x720 (D)

34

Reference Manual

IDT Cameras SDK

2.4.6. Record modes

Two record modes are available (XSP_REC_MODE parameter):

Normal (XS_RM_NORMAL): the camera starts to acquire and stops when the
configured area is filled. The synchronization may be internal or external. The event
trigger does not effect the acquisition.

Circular (XS_RM_CIRCULAR): the camera starts the acquisition and, when the
configured memory area is filled, restarts from the beginning. The synchronization
may be internal or external. The event trigger is required to complete the acquisition.
When the event trigger is detected, the camera acquires the post-trigger frames and
then stops. The user should configure the number of pre-trigger frames.

The number of frames are configured in the XSP_FRAMES parameter, the number of
pre-trigger frames are configured in the XSP_PRE_TRIG parameter. The same values
are arguments of the XsMemoryStartGrab routine.

Three options are available:

XSP_PRE_TRIG = 0: the event trigger starts the acquisition. After the trigger the
camera acquires XSP_FRAMES frames.

XSP_PRE_TRIG = XSP_FRAMES: the event trigger stops the acquisition. After the
trigger the camera doesn't acquire any more frame.

XSP_PRE_TRIG < XSP_FRAMES: the camera acquires continuously. When the
event trigger is detected, the camera acquires the post-trigger frames, that are
corresponding to (XSP_FRAMES-XSP_PRE_TRIG-1), then it stops.

After the acquisition, the position of the “trigger frame” may be anywhere in the recorded
memory (See below).

*) Trigger Position

! 4
N

O FPre-trigger frames (300
W Fost-trigger frarmes (TO)
(=) First frame position

The position of the trigger frame is returned by the XsMemoryReadTriggerPosition
routine. order to read frames in correct order, the procedure is the following:

Read the trigger frame position.

Read the values of total number of frames (nFrames) and pre-trigger frames
(nPreTrig).

calculate the position of the first frame of the sequence (nFirst).

Read from nFirst to nFrames-1, then from 0 to nFirst-1.

Reference Manual 35

IDT Cameras SDK

2.4.7. Synchronization modes

36

The source of the sync may be configured (XSP_SYNCIN_CFG parameter):

Internal (XS_SIC_INTERNAL): the camera does not care about any external sync
signals and acquires at internal frame rate. The rate has been configured by the
XSP_PERIOD parameter.

External edge-high (XS_SIC_EXT_EDGE_HI): the camera exposure starts when
the external sync signal edge goes from low to high.

External edge-low (XS_SIC_EXT_EDGE_LO): the camera exposure starts when the
external sync signal edge goes from high to low.

External pulse-high (XS_SIC_EXT_PULSE_HI): the camera exposure starts when
the external signal goes from low to high and corresponds to the pulse duty cycle.
External pulse-low (XS_SIC_EXT_PULSE_LO): the camera exposure starts when
the external sync signal edge goes from high to low and it corresponds to the low
level.

External IRIG/GPS (XS_SIC_IRIG_DTS_EXT): the synchronization is controlled by
an IRIG/GPS 1PPS signal and the camera aligns the acquisition timing to that signal.
The module is external.

Internal IRIG/GPS (XS_SIC_IRIG_DTS_INT): the synchronization is controlled by an
IRIG/GPS 1PPS signal and the camera aligns the acquisition timing to that signal.
The module is internal.

External 1PPS (XS_SIC_1PPS): the synchronization is controlled by an external
1PPS signal connected to the camera sync in. The camera aligns the acquisition
timing to that signal.

External Precision Time Protocol (XS_SIC_PTP): the synchronization is controlled
by PTP and the camera aligns the acquisition timing to that signal.

External edge-high in Phase Lock Loop (XS_SIC_EPLL_EDGE_HI): the camera is
sync-ed to the rising edge of the external signal and keeps recording if the signal
disappears.

External edge-low in Phase Lock Loop (XS_SIC_EPLL_EDGE_LO): the camera is
sync-ed to the falling edge of the external signal and keeps recording if the signal
disappears.

External dynamic pulse-high (XS_SIC_EDYN_PULSE_HI): the camera acquires in
external high pulse mode and dynamically follows the input signal when the width
changes.

External dynamic pulse-low (XS_SIC_EDYN_PULSE_LO): the camera acquires in

external low pulse mode and dynamically follows the input signal when the width
changes.

Reference Manual

IDT Cameras SDK

2.4.8. Triggering

If the record mode is set to “Circular” the event trigger may be issued via the external
“Trig-In” connector (a pulse or a switch closure) or via software (a call to the XsTrigger
routine). The trigger may be configured as in the list below (XSP_TRIGIN_CFG
parameter):

Edge High (XS_TIC_EDGE_HI): the trigger is detected when the input signal goes
from low to high.

Edge Low (XS_TIC_EDGE_LO): the trigger is detected when the input signal goes
from high to low.

Switch closure (XS_TIC_SWC): the trigger is detected when the poles of the trigger
connector are shortened (it corresponds to edge-low).

Disabled (XS_TIC_DISABLED): the camera does not receive any software or
hardware trigger.

2.4.9. Sync Out modes

The cameras have a sync out connector that can be used to synchronize other cameras.
The XSP_SYNCOUT_CFG parameters configures the sync out signal.

Default (XS_SOC_DFL): the sync out follows the camera sync. The frequency of the
signal is the camera frame rate and the duty cycle is the exposure.

Inverted default (XS_SOC_DFL_INV): the same as above but inverted.

Configurable width (XS_SOC_CFGWID): the signal frequency is corresponding to
the camera frequency, but the duty cycle is configurable (parameter
XSP_SYNCOUT_WID).

Inverted Configurable width (XS_SOC_CFGWID_INV): same as above but
inverted.

Disabled (XS_SOC_DISABLED): no signal is produced on the sync out.

Double exposure (XS_SOC_DBLEXP): the sync out reproduce the timing of the
double exposure mode.

1PPS (XS_SOC_1PPS): deprecated.

Reference Manual 37

IDT Cameras SDK

2.4.10.

Pixel Gain

IDT cameras sensors are 12 bit (Os series and Y6) or 10 bit (other models). The data is
stored in 10/12 bit format into the DDR. 8-bit data can be extracted from 12/10 bit data
with the Pixel Gain parameter (XSP_PIX_GAIN).

If we call bitO the least significant pixel and bit9 the most significant pixel, we can extract 8

bits from 10 like in the picture below.

‘

2 hit output
Zain 1x
Gain 2x
lGaindx
glal7]6|s|4]a]z]1]0]

I

10 kit Input

The same extraction can be applied to the 10 most significant pixels of 12 bit data (see
the picture below).

2 hit output

Gain 1%

Gain 2%

I

-

I l Zain 4x

[11]in]a|s]7]6]s]4

3

2|1]o]

12 hit Input

The table below shows the pixel depth of IDT camera models and pixel gain support.

38

Camera Pixel depth Pixel Gain
MotionXtra O/Os 12 bit Yes
CrashCam 12 bit Yes
CrashCam Mini 12 bit Yes
MotionPro Y 10 bit Yes
MotionXtra N/NR/NX 10 bit Yes
X-Stream PCle/TB 10 bit Yes
MotionScope M 10 bit Yes

Reference Manual

IDT Cameras SDK

24.11. Look-up Table (LUT)

The look up table (LUT) transformations are basic image-processing functions that may
be used to improve the contrast and the brightness of an image by modifying the dynamic
intensity of region with poor contrast. LUT transformations can highlight details in areas
containing significant information, at the expense of other areas.

A LUT transformation converts input gray-level or color values (8, 10 or 12 bit) into other
gray-level or color values. The transfer function has an intended effect on the brightness
and contrast of the image. Each input value is transformed into a new value by a transfer
function

Output value = F (input value)

Where F is a linear or nonlinear, continuous or discontinuous transfer function defined
over the interval [0, max]. In case of an 8-bit image, a LUT is a table of 256/1024 or 4096
elements (depending on sensor pixel depth). Each element of the array represents an
input value. Its content indicates the output value.

The SDK has a set of 5 fixed look up tables and one user LUT.

XSP_LUT parameter: the parameter configures the LUT selection (XS_LUT_A to
XS_LUT_BT2020 for fixed look up tables, XS_LUT_USER for user).

XsLoadLookupTable routine: if the XSP_LUT parameter is set to XS LUT _USER, a
custom look up table may be sent to the camera. The code below shows how to build a
user LUT.

XSI_SNS_PIX_DEPTH info: it returns the sensor pixel depth. The returned value is used
to set the user LUT size (see the code below).

Reference Manual 39

IDT Cameras SDK

// Configure the camera
XSULONG32 nSnsPD=0,nHival=0;
XSULONG32 i,nSize,nValue;
unsigned short anLUT[4096];

XsGetCameraInfo (hCamera, XSI SNS PIX DEPTH, &nSnsPD, &nHivVal);

// calculate the LUT size (example: 10 corresponds to 1024)
nSize = 1<<nSnsPD;

// Build a LUT that sets a gain of 2

for (1=0; i<nSize; i++)

{

nValue = 2*i;
if (nvValue> (nSize-1)) anLUT[i] = nSize-1;
else anLUT[1] = nValue;

}

// Configure the LUT

XsSetParameter (hCamera, &xsCfg, XSP LUT, XS LUT USER);
XsLoadLookupTable (hCamera, anLUT, nSize);

// Configure the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

2.412. Auto-exposure

The parameters that control the auto-exposure are shown below:

Parameter Description

XSP_AE_ENABLE It enables and disables the auto-exposure
XSP_AE_ROIX, XSP_AE_ROIY, |It configures the reaction speed to changes in the
XSP_AE_ROIWIDTH, image intensity (0: slow, reacts within a few frames
XSP_AE_ROIHEIGHT and averages; 7: fast, reacts within one frame).
XSP_AE_SPEED configures the auto-exposure region of interest. That

is, the area of the sensor that is used to automatically
configure the exposure

XSP_AE_REFERENCE It configures the reference value of intensity (the
‘Luminance” in the AE region of interest). The
camera changes the exposure to make the image
intensity in the AE ROI equal to this value.

XSP_AE_CUR_LUMA It's a read-only parameter (the current value of the
intensity in the AE region of interest). This value
should be read before enabling the AE and used to
set the reference value.

Follow the steps below to configure the auto-exposure parameters in the camera.
Open and configure the camera: Disable the auto-exposure (XSP_AE_ENABLE=0) and

set the auto-exposure region of interest (XSP_AE_ROIX, XSP_AE_ROIY,
XSP_AE_ROIWIDTH, XSP_AE_ROIHEIGHT).

40 Reference Manual

IDT Cameras SDK

// Configure the camera

XsSetParameter (hCamera, &xsCfg, XSP AE ENABLE, 0);
XsSetParameter (hCamera, &xsCfg, XSP_AE ROIX, 256);
XsSetParameter (hCamera, &xsCfg, XSP AE ROIY, 256);
XsSetParameter (hCamera, &xsCfg, XSP_AE ROIWIDTH, 512);
XsSetParameter (hCamera, &xsCfg, XSP AE ROIHEIGHT, 512);

// Configure the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

Calculate the reference value. Snap an image with the desired intensity and read the
current reference value from the camera (XSP_AE_CUR_LUMA).

XSULONG32 nRefLuma;

// Snap

XS FRAME frm;

frm.pBuffer = m pDataBuf;

frm.nBufSize = m nBuSize;

fmr.nImages = 1;

XsSynchGrab (hCamera, &frm, 1000);

// read the reference

XsGetParameter (hCamera, &xsCfg, XSP AE CUR LUMA, (nRefLuma);

Configure the camera for AE: set the value of AE reference (XSP_AE_REFERENCE),
set the desired speed (XSP_AE SPEED) and enable the auto-exposure
(XSP_AE_ENABLE=1).

// set the parameters

XsSetParameter (hCamera, &xsCfg, XSP AE SPEED, nRefLuma);
XsSetParameter (hCamera, &xsCfg, XSP _AE SPEED, 3);
XsSetParameter (hCamera, &xsCfg, XSP AE ENABLE, 1);

// Configure the camera
XsRefreshCameraSettings (hCamera, &xsCfg);

Record: set the camera in live mode (XsSynchGrab) or record a sequence in camera
memory (XsMemoryStartGrab).

Reference Manual 41

IDT Cameras SDK

2.4.13. HDMI/SDI output and Video modes

42

HDMI output is active on Y cameras and SDI is active in Os/CC and Ccmini models.
Those models can display live images and playback acquisitions via HDMI/SDI output
independently from the computer. HDMI/SDI output is configured via the
XSP_HDMI_MODE parameters. The available modes are:

* XS_HDMI_OFF: HDMI/SDI is disabled. No output is produced.

« XS_HDMI_ON: HDMI/SDI is enabled. Any time the XsSynchGrab or the
XsMemoryReadFrame routines are called, the image is simultaneously sent to the
computer (via USB or Ethernet) and to the HDMI output.

.« XS_HDMI_TRANSFER: deprecated.

« XS_HDMI_INDEPENDENT: HDMI/SDI is enabled and independent from the
computer. The XsReadToVideo routine should be called to generate output to the
HDMI. XsSynchGrab and XsMemoryReadFrame do not affect HDMI. The user can
activate Live to the computer and playback images to the HDMI, or download images
to the computer and do live on HDMI.

Y and O cameras support different HDMI modes and formats. The table below shows
which parameters may be configured for video output in Y cameras.

Parameter Description

0: Disabled
1: Enabled (images go to the PC and to the HDMI video)

3: Images may be independently shown on PC or
HDMI/SDI.

11280 x 720 — 60 Hz
: 1920 x 1080 — 60 Hz
:1920 x 1080 — 25 Hz
:1920 x 1080 — 40 Hz
11920 x 1080 — 30 Hz

11920 x 1080 — 60 Hz
11920 x 1080 — 50 Hz
:1920 x 1080 — 30 Hz
:1920 x 1080 — 25 Hz
11920 x 1080 — 24 Hz
11280 x 720 — 60 Hz
11280 x 720 — 50 Hz
11280 x 720 — 30 Hz
11280 x 720 — 25 Hz
11280 x 720 — 24 Hz

XSP_HDMI_MODE

XSP_VIDEO_MODE (Y)

XSP_VIDEO_MODE
(Os/CCICCm)

OCONOOPWN_O(PPWON-_O0O

Disable/Enable a data overlay that shows fps, exposure,

XSP_HDMI_OVERLAY ; -
resolution and other timing parameters

Some of the parameter may apply to X and HG legacy cameras.
*+ X cameras: XSP_VIDEO_MODE enables PAL mode (0) or NTSC mode (1).

* HG-legacy cameras: XSP_HDMI_MODE enables or disables the video output.
XSP_VIDEO_MODE controls the PAL/NTSC configuration.

Reference Manual

IDT Cameras SDK

2.4.14. Binning

Binning is the process of combining adjacent pixels of the sensor during readout. The
primary benefit of binning is improved signal to noise ratio (SNR), albeit at the expense of
reduced spatial resolution.

The maximum image size for each binning is not an even division of the 1x1 maximum
image size. When you switch from a value of binning to another and update the
configuration to the camera, your binning values will be adjusted to fit the new binning
mode. When binning, ROI is specified in “super-pixels”.

A common mistake occurs when switching from higher binning, such as 4x4, to lower
binning, such as 1x1. If the caller forgets to adjust the region, they will end up with the old
4x4 size. When switching binning modes, you might want to select the largest possible
region as follows:

XSULONG32 nMaxWid, nMaxHgt;

// Get the current maximum image size
XsGetParameter (hCamera, &xsCfg, XSP MAX WIDTH, snMaxWid) ;
XsGetParameter (hCamera, &xsCfg, XSP MAX HEIGHT, &nMaxHgt);

// Reset ROI to the new maximum values

XsSetParameter (hCamera, &xsCfg, XSP ROIX, 0);
XsSetParameter (hCamera, &xsCfg, XSP ROIY, 0);
XsSetParameter (hCamera, &xsCfg, XSP ROIWIDTH, nMaxWid) ;
XsSetParameter (hCamera, &xsCfg, XSP ROIHEIGHT, nMaxHgt);

Reference Manual 43

IDT Cameras SDK

2.5. Image Grab in camera or computer DDR

Some camera models (Y, Nx, Os, O, CC and CC-mini) have onboard DDR. Some other
models don't (Xstream PCle and Xstream Mini) and stream images in computer memory.

2.5.1. Asynchronous Live

44

IDT cameras support a fast way to grab live images: XsLive(). Some old models do not
support it, and the XSI_FAST_LIVE info returns 0.

An example of the code that implements fast live is shown below.

// example: enable fast live
XS FRAME frame;
XSULONG32 nWidth, nHeight, nPixDepth, nBufSize;

// Image size depends on the current ROI & image format.
XsGetParameter (hCamera, &xsCfg, XSP_ROIWIDTH, &nWidth);
XsGetParameter (hCamera, &xsCfg, XSP ROIHEIGHT, &nHeight);
XsGetParameter (hCamera, &xsCfg, XSP PIX DEPTH, &nPixDepth);

// Fill out fields in XS FRAME structure.

1if(nPixDepth<9) nBufSize = nWidth*nHeight;

else if(nPixDepth<l7) nBufSize = 2*nWidth*nHeight;
else 1f(nPixDepth<25) nBufSize = 3*nWidth*nHeight;
else nBufSize = 6*nWidth*nHeight;

frame.nBufSize = nBufSize;

frame.pBuffer = malloc(frame.nBufSize);
frame.nImages = 1;

// start live
XsLive (m_hCam, XS LIVE START);

// grab images in a loop (or in a thread) and display
while ()
{

// grab

XsMemoryPreview (m_hCam, &frame, pnFramelIndex);

// display

}

// stop fast live
XsLive (hCam, XS LIVE STOP);

NOTE: if fast live is on, the routine XsSynchGrab cannot be called. The user should call
the XsMemoryPreview routine. The XS_FRAME structure should be filled with the same
information of XsSynchGrab.

NOTE?2: if a camera supports fast live, we recommend to use it instead of XsSynchGrab
because it's faster.

Reference Manual

IDT Cameras SDK

2.5.2. Synchronous Live

To synchronously grab an image from a camera, allocate an image buffer of enough size,
fil an XS_FRAME structure, then call a grab function. Below is an example of a
synchronous frame grab.

XS FRAME frame;
XSULONG32 nWidth, nHeight, nPixDepth, nBufSize;

// Image size depends on the current ROI & image format.
XsGetParameter (hCamera, &xsCfg, XSP_ROIWIDTH, &nWidth);
XsGetParameter (hCamera, &xsCfg, XSP ROIHEIGHT, &nHeight);
XsGetParameter (hCamera, &xsCfg, XSP_PIX DEPTH, &nPixDepth);

// Fill out fields in XS _

FRAME structure.

else if(nPixDepth<17) nBufSize

1f(nPixDepth<9) nBufSize = nWidth*nHeight;

= 2*nWidth*nHeight;

else if(nPixDepth<25)

nBufSize = 3*nWidth*nHeight;

else nBufSize = 6*nWidth*nHeight;

frame.nBufSize = nBufSize;

frame.pBuffer = malloc (frame.nBufSize);
frame.nImages = 1;

// Do synchronous image grab with a 5 sec time out
XsSynchGrab (hCamera, &frame, 5000);

// Process the data

// free the buffer
free (frame.pBuffer);

XsSynchGrab returns when the image has been acquired and read. The process is
slower than XsLive because the camera executes a small acquisition of a few frames
every time XsSynchgrab is called.

In double exposure mode the camera acquires 2 images, so the user must provide
enough space in the buffer before calling the XsSynchGrab. The example below shows
how to grab an 8 bit image pair in double exposure.

XS FRAME frame;

XSULONG32 nWidth,nHeight;

// Image size depends on the current ROI & image format.
XsGetParameter (hCamera, &xsCfg, XSP _ROIWIDTH, &nWidth);
XsGetParameter (hCamera, &xsCfg, XSP ROIHEIGHT, &nHeight);
// Fill out fields in XS FRAME structure.
frame.nBufferSize = 2*nWidth*nHeight;

frame.pBuffer = malloc(frame.nBufferSize);

frame.nImages = 2;

// Do synchronous image grab with a 5 sec time out
XsSynchGrab (hCamera, &frame, 5000);

// free the buffer

free (frame.pBuffer);

Reference Manual 45

IDT Cameras SDK

2.5.3. Image Grab in camera memory

46

Some digital camera models have on-board memory. The user may acquire sequences of
images into camera memory and then transfer them to the host PC memory or to the hard
disk. During the acquisition process, the latest frame acquired may be previewed.

First few MB of the camera memory are reserved for Live. Read XSI_LIVE_BUF_SIZE
info and use the value as offset to recording start address.

There are two ways to detect if the acquisition has been executed.
¢ Install a callback: the source code below shows how to start a camera acquisition

and set a callback routine that will be called when the acquisition is finished. The
main program should wait until the callback is called.

HANDLE hEvent;
XSULONG32 nStartAddLo=0, nStartAddHi=O0;

// create an event object and start the acquisition
XsGetCameraInfo (hCamera,XSI LIVE BUF SIZE, &nStartAdd,
&nStartAddHi)

// create an event object and start the acquisition
void StartAcquisition()
{
hEvent = CreateEvent (NULL, FALSE, FALSE, "Event”) ;
XsMemoryStartGrab (hCamera, nStartAddLo, nStartAddHi, 100, 0,
fcallback, XS CF DONE, hEvent);
}

// callback routine (signals the event)
void XSTREAMAPI fcallback(void *pUserData, XS ERROR nErrCode,
XSULONG32 nFlags)
{
HANDLE h = (HANDLE)pUserData;
SetEvent (h) ;
}

// the main program previews and waits on the event object
BOOL WaitAcquisitionToFinish()
{

XS_FRAME xf;

// init XS FRAME (see XsSynchGrab)

// loop on the event and preview
while(WaitForSingleObject (hEvent, 50)== WAIT TIMEOUT)
{

XsMemoryPreview (hCamera, &xf, NULL) ;

// display the frame

}
return TRUE;

Reference Manual

IDT Cameras SDK

¢« Poll the camera status until it returns the “acquisition done” value. The code below
shows how to start and acquisition and check the camera status to detect that the
images have been correctly acquired.

XSULONG32 nStartAddLo=0, nStartAddHi=0;

// read the live offset and use it as start address
XsGetCameralInfo (hCamera,XSI LIVE BUF SIZE, &nStartAdd,
&nStartAddHi)

// start the acquisition (do not install any callback)
void StartAcquisition ()
{
XsMemoryStartGrab (hCamera, nStartAddLo, nStartAddHi, 100, 0,
NULL, 0, NULL);
}

// the main program polls the status and previews
BOOL WaitAcquisitionToFinish()
{

XS_FRAME xf;

XSULONG32 nBusy, nSts;

// init XS FRAME (see XsSynchGrab)

// loop on the event and preview
while((nTime - nStarTime) < nTimeOut)
{
nBusy = nSts = 0;
XsGetCameraStatus (hCamera, &nBusy, &nSts, 0,0,0,0) ;
if (nBusy==0 &&
nStS!:XSST_REC_PRETRG && nSts!:XSST_REC_POSTRG)
break;
// preview
XsMemoryPreview (hCamera, &xf, NULL) ;
// display the frame

// delay and calculate the time
}
return TRUE;

Reference Manual 47

IDT Cameras SDK

2.5.4. Multiple Acquisitions in camera memory

48

The camera DDR can be addressed allowing the user to make multiple acquisitions.

However, the camera DOES NOT remember the settings of each acquisition: if two or
more acquisitions have been done with different configuration parameters (ROI, pixel
depth, etc.) the user program MUST remember those settings and configure the camera
before each image read.

The first acquisition in camera memory should start from the value returned by the
XSI_LIVE_BUF_SIZE info.

XSULONG32 nAddlLo=0, nAddlHi=0;

// read the live offset and use it as start address
XsGetCameraInfo (hCamera, XSI LIVE BUF SIZE, &nAddlLo, &nAddlHi);
// set the number of frames

XsSetParameter (hCamera, &xsCfg, XSP FRAMES, 100);

// set other parameters

// configure
XsRefreshCameraSettings (hCamera, &xsCfg);

The next available address may be calculated from the number of recorded frames and
the size of each recorded frame. Before configure other values of address or frames
make sure that you have saved the values of your first acquisition.

// save old values
XSULONG32 nSizel,nFrmsl,nAddlLo,nAddlHi;
XSUINT64 nAddl;

// read address and convert into 64 bit number
XsGetParameter (hCamera, &xsCfg, XSP _STARTADDRLO, &nAddlLo);
XsGetParameter (hCamera, &xsCfg, XSP_STARTADDRLO, &nAddl1Hi) ;
nAddl = (XSUINT64)nAddlLo + (((XSUINT64)nAddlHi)<<32);

// read frame size of current acquisition and save it
XsGetParameter (hCamera, &xsCfg, XSP _FRAMES, &nFrmsl);
XsGetParameter (hCamera, &xsCfg, XSP_FRAME SIZE, &nSizel);
// calculate next address

XSULONG32 nAdd2Lo,nAdd2Hi,nFrms2=200;

XSUINT64 nAddl;

nAdd2 = nAddl + (XSUINT64)nFrmsl* (XSUINT64)nSizel;

nAddlLo = (XSULONG32)nAdd2;

nAdd2Hi = (XSULONG32) (nAdd2>>32);

// use values to acquire a new segment

XsSetParameter (hCamera, &xsCfg, XSP_STARTADDRLO, nAdd2Lo) ;
XsSetParameter (hCamera, &xsCfg, XSP STARTADDRLO, nAdd2Hi);
XsSetParameter (hCamera, &xsCfg, XSP_ FRAMES, nFrms?2) ;

// configure

XsRefreshCameraSettings (hCamera, &xsCfg);

Reference Manual

IDT Cameras SDK

The sequence below shows how to switch from one acquisition to another and save
images from two acquisitions.

Backup the camera settings of both acquisitions.

Configure the camera with the parameters of first acquisition.
Transfer the first acquisition images.

Configure the camera with the parameters of second acquisition.

Transfer the second acquisition images.

Reference Manual 49

IDT Cameras SDK

2.5.5. Image Grab in computer memory (streaming cameras)

X-Stream PCle and XS-Mini cameras do not have on-board memory and images are
acquired in computer memory.

In PCle and TB cameras, live is implemented as fast live (see “Image Live” topic above).

The DMA buffer allocated by the driver is the “virtual” camera DDR. The images may be
acquired by calling XsMemoryStartGrab with address 0 (see below).

HANDLE hEvent;

// create an event object and start the acquisition
void StartAcquisition ()
{
hEvent = CreateEvent (NULL, FALSE, FALSE, "Event”) ;
XsMemoryStartGrab (hCamera, 0,0,100,0,
fcallback, XS CF DONE, hEvent);
}

// callback routine (signals the event)
void XSTREAMAPI fcallback(void *pUserData, XS ERROR nErrCode,
XSULONG32 nFlags)
{
HANDLE h = (HANDLE)pUserData;
SetEvent (h) ;
}

// the main program previews and waits on the event object
BOOL WaitAcquisitionToFinish ()
{

XS_FRAME xf;

// init XS FRAME (see XsSynchGrab)

// loop on the event and preview
while (WaitForSingleObject (hEvent,50)== WAIT TIMEOUT)
{

XsMemoryPreview (hCamera, &xf, NULL) ;

// display the frame

}
return TRUE;

DMA memory cannot be partitioned, so multiple acquisitions cannot be done. Once the
mages are acquired, each frame can be read with the XsMemoryReadFrame (see the
topic below).

50 Reference Manual

IDT Cameras SDK

2.5.6. Read images acquired in normal or circular mode

If images have been acquired in normal mode, they are sorted in camera (or computer
memory). They can be read as it is, starting from the recording address.

// the address below must be 0,0 for streaming cameras
// nAddLo, nAddHi

// read 10 frames
for (int i=0;i<10;i++)
{
XsMemoryReadFrame (hCamera, nAddLo, nAddHi, i, pBuf);
}

In circular mode, the first (oldest) frame may be anywhere in the camera (or computer)
memory buffer allocated for the acquisition. If you wish to read the images in sorted order,
do the following.

= Read trigger position XsMemoryReadTriggerPosition.
= Get nFrames, nPreTriggerFrames (they can be read with XsGetParameter).
= Find first frame position (nFirstFrame).

= Read from nFirstFrame to nFrames-1, then from 0 to nFirstFrame-1.

// after recording read the trigger position
XSULONG32 nAddLo, nAddHi;

XSULONG32 nFrame,nPreTrig;

XSULONG32 nPosLo,nPosHi,nTrgldx,nTime,nStartIdx;
int i;

// read trigger position to order frame indexes
XsGetParameter (hCam, &xsCfg, XSP FRAMES, &nFrames);
XsGetParameter (hCam, &xsCfg, XSP PRE TRIG, &nPreTrig);

// read trigger position to order frame indexes
XsMemoryReadTriggerPosition (hCam, nPosLo, PosHi,nTrgldx,nTime) ;

// find first frame position
if(nTrgldx>=nPreTrig) nStartIdx = nTrgldx - nPreTrig;
else nStartIdx = nFrames - (nPreTrg - nTrgldx);

// it can be also calculated in a single op
// nStartIdx = (nTrgldx + nFrames - nPreTrg)%$nFrames;

// sort the frames (read from start frame to nFrames - 1)

for (i=nStartIdx; i<nFrames; 1i++)
XsMemoryReadFrame (hCam, nAddLo, nAddHi, i, pBuf) ;

// read from 0 to start index - 1

for (1=0; i<nStartIdx; i++)
XsMemoryReadFrame (hCam, nAddLo, nAddHi, i, pBuf) ;

Reference Manual 51

IDT Cameras SDK

2.6. Image grab in camera SSD

Os, O, CC and CC-mini camera models are equipped with a solid state disk (or
removable SD-card) that can store images.

2.6.1. SSD Backup mode

52

In backup mode, the camera records images in the DDR and, when the images are
acquired, it transfers the data to the SSD. There is no limit in the frame rate, but the
number of frames must fit in the camera DDR.

The procedure is shown below.

Configure the camera with the required parameters. Set the XSP_PROP parameter to
XS _PR_SSD_BACKUP. Make sure that the XSP_FRAMES parameter value is lower
or equal to the maximum number of frames that fit in the camera DDR.

Before recording images for the first time, make sure you have a clean SSD. Call the
XsEraseDisk routine. If the SSD contains images that you don't want to erase, make
sure that you don't overwrite them in the acquisition. To do that, check the "Read the
images from the SSD" section and calculate the record address from the addresses
of the previous acquisitions.

The area used to store the images before saving them to the SSD is calculated by
removing the live area (XSI_LIVE_BUF_SIZE) from the DDR size (XSI_MEMORY).

To start recording, call the XsMemoryStartGrab. Then trigger the camera and wait for
the callback or check the camera status.

Reference Manual

IDT Cameras SDK

XSULONG32 nStartAddLo, nStartAddHi, nFrames;
XSULONG32 nFrmSize, nMemLo, nMemHi, nLiveOffs, nHi;

// erase the SSD if doesn't contain useful images
XsEraseDisk (hCamera) ;

// Configure the camera
XsSetParameter (hCamera, &xsCfg, XSP PROP, XS PR SSD BACKUP) ;
XsRefreshCameraSettings (hCamera, &xsCfg);

// set the correct address
nStartAddLo = 0;
nStartAddHi = 0;

// calculate the max number of frames (fit in the DDR)
XsGetParameter (hCamera, &xsCfg, XSP FRAME SIZE, &nFrmSize);
XsGetCameraInfo (m hCam, XSI MEMORY, &nMemLo, &nMemHi) ;
XsGetCameraInfo (m hCam, XSI LIVE BUF SIZE, & nLiveOffs, &nHi);

// divide the DDR size minus the live area by the frame size

// the frame size changes if the ROI changes

nFrames = (XSULONG32) ((((XSINT64)nMemLo+ (XSINT64) (nMemHi<<32)) -
(XSINT64)nLiveOffs) /nFrmSize) ;

// start recording
XsMemoryStartGrab (hCamera, nStartAddLo, nStartAddHi,
nFrames, 0,fcallback, XS CF DONE, this);

Reference Manual 53

IDT Cameras SDK

2.6.2. SSD Streaming mode

54

In streaming mode, the camera records images in the DDR and simultaneously stores
them in the SSD. The maximum frame rate is limited by the SSD write speed. In this
mode the user may acquire a number of images larger than the DDR size.

Configure the camera with the required parameters. Set the XSP_PROP parameter to
XS_PR_SSD_STREAMING. To calculate what is the number of frames you can
acquire for a given frame rate, read the XSP_SSD_MAX_FRMS parameter. Make
sure that the XSP_FRAMES parameter value is lower or equal to that value,
otherwise you may receive an SSD write overrun error.

Another important parameter that should be read is the XSP_SSD_STRM_PER
parameter, that is, the inverse of the "streaming fps". The streaming fps is the value of
the frame rate that corresponds to the write to disk speed.

If the frame rate is slower than the "streaming fps", the SSD is "faster" than the DDR,
then the camera can record any number of frames without overrun. In this case the
maximum number of frames is limited by the SSD size.

If the frame rate is faster than the "streaming fps", the SSD is "slower" than the DDR,
then the camera has a limited number of frames that can be acquired before overrun
(XSP_SSD_MAX_FRMS). This number is calculated assuming that the record mode
is normal. If the record mode is circular, the overrun may occur if the user waits too
long before triggering the camera.

Before recording images for the first time, make sure you have a clean SSD. Call the
XsEraseDisk routine. If the SSD contains images that you don't want to erase, make
sure that you don't overwrite them in the acquisition. To do that, check the "Read the
images from the SSD" section and calculate the record address from the addresses
of the previous acquisitions.

To start recording, call the XsMemoryStartGrab. Then trigger the camera and wait for
the callback or check the camera status.

Reference Manual

IDT Cameras SDK

XSULONG32 nStartAddLo, nStartAddHi, nFrames;
XSULONG32 nFrmSize, nMemLo, nMemHi;

// nFrames is the number of images you want to acquire
nFrames =

// erase the SSD if doesn't contain useful images
XsEraseDisk (hCamera) ;

// Configure the camera
XsSetParameter (hCamera, &xsCfg, XSP PROP, XS PR SSD STREAMING) ;
XsRefreshCameraSettings (hCamera, &xsCfg);

// set the correct address

nStartAddLo = nStartAddHi = 0;

// calculate the max number of frames

XsGetParameter (hCamera, &xsCfg, XSP SSD MAX FRMS, &nMaxFrames) ;

// make sure that you record less than Max frames

if (nFrames>nMaxFrames) nFrames = nMaxFrames;

// start recording

XsMemoryStartGrab (hCamera, nStartAddLo, nStartAddHi, nFrames, O,
fcallback, XS CF DONE, this);

Reference Manual 55

IDT Cameras SDK

2.6.3. Read images from SSD

56

The images stored in the camera SSD cannot be directly read, but they have to be copied
to the camera DDR. The DDR acts as a temporary buffer from which the images may be
read for playback or download.

The procedure is shown below:

Read the list of acquisitions that are already stored in the SSD. the routine is
XsReadCameraSettingsArray. The nOption parameter need to be set to 1.

The routine returns an array of XS_SETTINGS structure. The parameters of each
acquisition may be retrieved by the structure with the XsGetParameter routine.
Important parameters are XSP_STARTADDRLO, XSP_STARTADDRHI (read the
address in the SSD address space), XSP_FRAME_SIZE (the size of a frame),
XSP_FRAMES (the total number of acquired frames). Those parameters may be
used to calculate the total size of the acquisition in the camera SSD.

Select the acquisition that will be downloaded by sending the corresponding
parameters to the camera (XsRefreshCameraSettings).

Call the XsMemoryReadFromDisk. The DDR address may be set to 0 and the SSD
address is set to the start address of the corresponding acquisition. Then the frames
may be copied in groups of N images by setting the start and the stop index. The
number of frames that will be copied from the SSD to the DDR may be the total
number of frames if the acquisition fits in the camera DDR, or a multiple of 256 if it
doesn't.

Reference Manual

IDT Cameras SDK

XS SETTINGS aXCfgl[256] = {0};
XSULONG32 nAddLo, nAddHi, nCount, nFrames;
XSULONG32 nFrmSz, nMemLo, nMemHi, nDDRFrms, nStart, nStop;

// read the array of configurations
nCount = sizeof (aXCfg)/sizeof (XS SETTINGS) ;
XsReadCameraSettingsArray (hCam, 1, aXCfg, 0, &nCount);

// select the configuration number 2 (just an example!!!)
XsRefreshCameraSettings (hCam, &aXCfgl[2]);

// read address

XsGetParameter (hCam, &aXCfg[2], XSP STARTADDRLO, &nAddLo);
XsGetParameter (hCam, &aXCfg[2], XSP STARTADDRHI, &nAddHi);
XsGetParameter (hCam, &aXCfg[2], XSP FRAMES, &nFrames);

// calculate the max number of frames
XsGetParameter (hCam, &aXCfg([2], XSP _FRAME SIZE, &nFrmSz);
XsGetCameraInfo (hCam, XSI MEMORY, &nMemLo, &nMemHi);

// divide the DDR size by the frame size

// and find the DDR room

nDDRFrms = (XSULONG32)
(((XSINT64)nMemLo+ (((XSINT64)nMemHi)<<32))/ (XSINT64)nFrmSz) ;

// read frames

nStart = 0;

if (nFrames<nDDRFrms) nStop = nFrames-1;
else nStop = 255;

while (nStop<=(nFrames-1))
{
XsMemoryReadFromDisk (m_hCam, 0,0, nAddLo, nAddHi, nStart,
nStop, pfnCallback, this);
nStart += 256;
nStop += 256;
if (nStop> (nFrames-1)) nStop = nFrames-1;

Reference Manual 57

IDT Cameras SDK

2.7. Image Streaming to disk (streaming cameras)

X-Stream PCle cameras (720p and 1440p) and XS-Mini cameras (1540, 3520, 4K and
Stick) have streaming to disk capabilities. Raw images captured in computer memory can
be saved in real time to local SSD.

Procedure:

= Start camera recording.

= Enable write to disk to start streaming.
= Manage notifications from driver.

= Disable write to disk to stop streaming.

= Trigger or stop camera recording.

The code sample below shows how to do it.

// start the acquisition
XsMemoryStartGrab (hCamera, 0,0,100,0,
fcallback, XS CF DONE, this);

// enable write to disk

XS W2DCFG w2d = {0};

w2d.nDrives = 1;

w2d.nOpt = 0;

strcpy (w2d.szVolumel, ”C: /") ;

strcpy (w2d.szDirectory, ”Stream2disk”) ;

XsConfigureWriteToDisk (hCam, 1, &w2d,w2dCallback, this);

// disable write to disk
XS W2DCFG w2d = {0};
XsConfigureWriteToDisk (hCam, 0, &w2d,NULL, NULL) ;

// manage callbacks

void XSTREAMAPI w2dCallback(void *pUserData,
XSULONG32 nParaml,
XSULONG32 nParam2,
XSULONG32 nErrCode)

// nParaml shows the number of saved frames disk
// nParam2 return the percentage of available DDR buffer
// the range is from 0 to 1000

In the example above a raw file folder will be created in “C:/Stream2disk” directory.

58 Reference Manual

IDT Cameras SDK

2.8. RAW files and virtual cameras

2.8.1. Virtual cameras

Virtual cameras have been introduced to convert raw data stored in removable devices,
such as SD cards, network disks or raw files. The SDK enumerates virtual cameras like
any other camera model, and gives the user the instruments to convert raw data into a
correct image format.

To enumerate virtual cameras and convert data, do the following.

¢ Call XsEnumCameras with the value of XS_EF_VCAM in the enumeration filter. The
routine will returns the virtual cameras with different values of the nLinkType field.

e XS_LT_SDCARD: the driver searches among the removable storage devices for any
SD card with stored data.

e XS_LT_RAWFILE: the driver searches in the database for raw files.

e Once a virtual cameras has been enumerated, call XsOpenCamera to open it,
XsReadCameraSettings to read the stored parameters, and then
XsMemoryReadFrame to read the images and store them to the hard disk in any file
format.

If you know the path of the raw file, you may also call the XsOpenRawCamera routine.
The first parameter (IpszRawFilePath) contains the full path to the rawfile.xml file or to the
directory that contains the rawfile.xml file.

Reference Manual 59

IDT Cameras SDK

2.8.2. Save data in RAW format

The images can be downloaded in RAW format from the camera memory directly to the
hard disk. To do that, use the XsMemoryDownloadRawFrame routine.

The example below shows how to save a sequence acquired in normal mode.

// create the path without the extension
// the raw file name will be file.raw

char szPath[256] = “c:\\users\\default\\Images\\AcgO0Il\\file”;
int 1i;
// read from frame 0 to frame N - 1

for (i=0; 1i<N; i++)
XsMemoryDownloadRawFrame (hCam, szPath, nAddLo, nAddHi, i, i,N) ;

The example below shows how to save a sequence acquired in circular mode.

// create the path without the extension
// the raw file name will be file.raw

char szPath[256] = “c:\\users\\default\\Images\\Acg0l\\File”;
XSULONG32 nPLo,nPHi,nTrgldx,nTime,nStartIdx;
int 1,3;

// read trigger position to order frame indexes
XsMemoryReadTriggerPosition (hCam, &nPLo, &nPHi, &nTrgIdx, &nTime) ;

// find first frame position
1if(nTrgIdx>=nPreTrig) nStartIdx = nTrgldx - nPreTrig;

else nStartIdx = nFrames - (nPreTrg - nTrgldx);
// read from start index to nFrames - 1
i=0;

for (i=0, j=nStartIdx; j<nFrames; i++, J++)
XsMemoryDownloadRawFrame (hCam, szPath, nAddLo, nAddHi, j,i,N) ;

// read from 0 to start index - 1

for (j=0; j<nStartIdx; i++, J++)
XsMemoryDownloadRawFrame (hCam, szPath, nAddLo, nAddHi, j, i,N) ;

60 Reference Manual

IDT Cameras SDK

2.8.3. Read data from RAW files

Once the acquisition has been saved to a RAW file, the images data can be read and
converted to any format. The RAW file may be open like a “virtual” camera and the
images read from the virtual camera memory.

There are two ways to open a raw file:

Before reading the data, use the XsPreConfigCamera to set the path to the folder where
the raw subfolders are stored, then enumerate the virtual cameras and use the returned

ID to open the file (see below).

// set the path to the raw acquisitions folder
XsPreConfigCamera (0, XSPP_DB FOLDER, (void*)szRawFld,0);

// enumerate the virtual cameras
XS_ENUMITEM info[64];
XSULONG32 i, nItems = 64;

XsEnumCameras (info, &nItems, XS EF VCAM) ;

// open the virtual camera with the enumerated ID
XsOpenCamera (info[0] .nCameralD, &m_hCam) ;

Open the RAW file with the full path to the folder where the file is stored.

// open the virtual camera with the full path
XsOpenRawCamera(szRawPath,&m_hCam);

Once the handle to the virtual camera is returned, read the configuration, send it to the
driver to refresh the settings and use some of the parameters to detect the number of

frames and the pre-trigger.

// set the path to the raw acquisitions folder
XS SETTINGS xsCfg = {0};

xsCfg.cbSize = sizeof (XS SETTINGS) ;
XsReadCameraSettings (hCam, &xsCfqg) ;
XsRefreshCameraSettings (hCam, &xsCfqg) ;

// retrieve the parameters used to read the images
XSULONG32 nWid, nHgt,nPixDep,nFrames;
XsGetParameter (m_hCam, &xsCfg, XSP ROIWIDTH, &nWid) ;
XsGetParameter (m hCam, &xsCfg, XSP ROIHEIGHT, &nHgt) ;
XsGetParameter (hCam, &xsCfg, XSP PIX DEPTH, &nPixDep) ;
XsGetParameter (m hCam, &xsCfg,XSP FRAMES, &nFrames) ;

Then allocate the memory buffer and read the data.

Reference Manual 61

IDT Cameras SDK

62

// compute the buffer size and allocate the
XSULONG32 nSize;

unsigned char* pData;

1f (nPD<9) nSize = nWid*nHgt;

else 1f(nPD<17) nSize = 2*nWid*nHgt;

else 1f (nPD<25) nSize = 3*nWid*nHgt;

else nSize = 6*nWid*nHgt;

pData = (unsigned char*)malloc(nSize);

// read the data from address 0
XsMemoryReadFrame (hCam, 0,0, 0, pData) ;

// convert it with your own routines

memory

Reference Manual

2.9. Miscellaneous

2.9.1. Bayer mode in color cameras

IDT Cameras SDK

Color cameras store the images in CFA Bayer format (see the appendix of the user
manual). The camera may convert those images in RBG format before sensing them to

the host computer.

The user may access the FCA images by enabling the raw mode on the camera with the

XsEnableRawMode routine.

If the raw mode is enabled, the image format is automatically set to Bayer (8 or 16 bit)

and the user can read the CFA image from the camera (see below).

// the camera is a color camera
// the image format is XS IM BGR24

// Enable raw mode
XsEnableRawMode (m_hCam, 1);

// read data in 8 bit Bayer format
XsMemoryReadFrame (m_hCam, 0, 0, O,

// Disable raw mode
XsEnableRawMode (m_hCam, 0);

Reference Manual

// each pixel is stored in a 3 bytes word

pDataBuffer) ;

63

IDT Cameras SDK

2.9.2. Read data from a BROC session

64

Hardware BROC (Burst Record on Command) is implemented in latest cameras
firmware. The acquisition is divided into sections and each section is managed a little
circular acquisition. When the camera receives a trigger the firmware automatically
switches to the next section and restarts. The user receives one callback only at the end
of the latest section. The user may retrieve which section is currently active by reading
the XSP_BROC_CURR_SECT parameter.

To detect if a camera supports the hardware BROC, read the
XSI_HW_BROC_SUPPORT information.

To configure and start a BROC session:

Set the XSP_FRAMES and the XSP_BROC_TOT_LEN to the total number of frames to
acquire. Set the XSP_BROC_LEN to the number of frames in each BROC section. Set
the XSP_PRE_TRIG parameter to the number of pre-trigger frames in each BROC
section. Then call XsMemoryStartGrab with the total number of frames and the pre-trigger
frames of a section (see below)

// example: configure a BROC session of 200 frames

// with 4 sections of 50 frames each

// each section has 20 pre-trigger and 30 post-trigger frames
XS SETTINGS xsCfg = {0};

xsCfg.cbSize = sizeof (XS SETTINGS) ;

XsSetParameter (m hCam, &xsCfg,XSP REC MODE, XSP RM BROC) ;

XsSetParameter (m_hCam, &xsCfg,XSP_FRAMES, 200);
XsSetParameter (m_hCam, &xsCfg,XSP_BROC TOT LEN, 200);
XsGetParameter (hCam, &xsCfg, XSP BROC LEN, 50);
XsGetParameter (m_hCam, &xsCfg,XSP_PRE TRIG, 20);

XsRefreshCameraSettings (hCam, &xsCfqg) ;
// start recording

XsMemoryStartGrab (hCam, nAddLo, nAddHi, 200,20, £fCallback,
XS_CF_DONE,NULL) ;

Read the BROC sections information and order the frames.

// read an array of 4 section info (200/50 = 4)
XS BROC SECTION bArrayl[4] = {0};
XsGetBrocParameters (m hCam, &ébArray([0],4);

Reference Manual

IDT Cameras SDK

2.9.3. IRIG/GPS data
IRIG/GPS is supported by any IDT camera model that is equipped with the corresponding
module. HG cameras store the IRIG information in the border data structure, other IDT
camera store the IRIG info in the frame.

XsReadGPSTiming returns the IRIG/GPS information from the latest read frame or from
the camera. The routine fills a XS_GPSTIMING structure passed by the caller.

The field nSignalPresent is usually 0 or 1. In some camera models it may return 4
different values when PTP sync in mode is configured.

0: no PTP detected, timing comes from camera internal clock.
1: PTP detected but no longer present, timing free runs from last PTP sync time.
2: PTP is detected but source is not synchronized with GPS, timing follows PTP.

3: PTP is detected and source is synchronized with GPS, timing follows PTP.

Reference Manual 65

IDT Cameras SDK

2.9.4. Motorized Lens support

66

O cameras, Os models, XS PCle and and some XS-Mini models support motorized
lenses (Canon or MFT).

Before configuring any lens parameter, make sure that a motorized lens is mounted on
the camera. To do so, read XSI_LENS_INFO value. Below a description of the returned
information.

= Bits 0 to 3 return the mount type (0: no lens, 1:Canon mount, 2:MFT mount, 4:IDT
MFT mount).

= Bit 4 returns whether the lens has variable zoom. Bit is 0 if the lens is prime.
= Bit 5 returns whether the lens has motorized zoom.

= Bit 6 to 31 are reserved for future use.

Once detected a lens and verified if the zoom can be configured, read minimum and the
maximum values of lens parameters.

XSP_LENS_FOCUS: units are in pulses. Values can be positive.

XSP_LENS_FOCUS_REL: units are in incremental steps. Values can be positive or
negative.

XSP_LENS_IRIS: units are F number multiplied by 100 (example: set 140 to configure F
1.4, set 2200 to configure F22).

XSP_LENS_ZOOM: units are in mm. If a lens is prime, minimum and maximum values
correspond. If the lens has manual zoom, the manual value can be read, but not written.

XSP_LENS_CMD: the user can send a command to the lens. Available values for lens
command are:

= XS_LCMD_POWEROFF: it powers off the lens.

= XS LCMD_RESET: it restores the lens after a power off (no need to unplug and plug
the lens).

Reference Manual

IDT Cameras SDK

2.9.5. Camera calibration (Background and PSC)

The architecture of the CMOS sensor introduces a noise to the acquired images. To
improve image quality a calibration file is produced and distributed with the camera. The
file is stored in the camera flash memory and should be downloaded to the hard disk.

The improvement of the image quality is done in two steps:

e Background: background images are acquired with the camera body cap on, and
then they are subtracted from regular images.

o Pixel Sensitivity Correction (PSC): after background subtraction, a set of
coefficients is used to compensate difference of pixel sensitivity in different zones of
the sensor.

The image quality may be improved in two ways:

o Factory calibration file: the file is stored in the camera flash memory and it may be
downloaded. It cannot be cannot be overwritten. from the camera, or copied from the
distribution CD. The correction with the factory file is active when the parameters
XSP_NOISE_RED (background) and XSP_NOISE_SENS (PSC) are set to 1.

o Current conditions calibration file: the user can also acquire background and pixel
sensitivity coefficients in current conditions. The values are stored in a local file that
can be overwritten and deleted (see below). The corrections with the current condition
file are active if the parameters XSP_NOISE_AUTO (background) and
XSP_PSC_AUTO (PSC) are set to 1.

The operations on calibration may be done with the XsCalibrateNoiseReduction routine
and different op-codes.

Calibration in optimal conditions

These operations affect the parameters stored in the factory calibration file, but they DO
NOT MODIFY the factory calibration file. These options are supported only on cameras
that have the calibration file downloaded on the local computer (HS, X and M cameras).

e XS_C_BKG_ALL: the camera lens cap must be on. The driver acquires background
images in all the conditions and stores them in memory. The factory calibration file is
not modified.

¢ XS _PSC_FILE_RELOAD: the driver loads the default camera calibration file and
overwrites the background and PSC coefficients stored in memory.

Calibration in current conditions

These operations allow the user to calibrate in current operating conditions. If some of the
camera parameters change after the calibration, the calibration should be executed again.
The calibration data are stored in a local file that can be reloaded, overwritten or deleted.
If a camera is pipeline, the local calibration file is also uploaded to the camera memory
and used on-board. If a pipeline camera is powered off, the current calibration data is lost.

¢ XS_C_CURRENT_BKG: the camera lens cap must be on. The driver computes the
background images in current operating conditions. The data is applied to the images
if the XSP_NOISE_AUTO parameter is 1.

Reference Manual 67

IDT Cameras SDK

e XS_C_CURRENT_PSC: remove the lens and put a constant light in front of the
sensor. The driver computes the pixel sensitivity coefficients in current operating
conditions. The data is applied if the XSP_NOISE_APSC parameter is 1.

¢ XS_C_CURRENT_RESET: the current calibration local file is deleted and the current
coefficients are reset.

Miscellaneous

e XS_C_FILE_DOWNLOAD: Giga-Ethernet cameras have on-board flash memory.
This option downloads the camera calibration file from flash memory to the hard disk.

e XS_C_ABORT: abort any of the above calibration procedures.

68 Reference Manual

IDT Cameras SDK

2.10. Legacy cameras

2.101. Enumerate and Open X cameras (GE)

When an X is powered on, it does not have an IP address. The enumeration returns only
a part of the XS_ENUMITEM structure because the driver is not able to establish a
connection with the camera. The user has two options:

e Open the camera with the partial structure: the driver automatically assigns an IP
address and fills the missing fields.

¢ Give the camera an IP address: the user may call the XsPreConfigCamera with the
XSPP_IP_ADDRESS parameter key and then enumerate the cameras again.

The sample below shows option 2.

XS_ENUMITEM xs1[10];

XSULONG32 nListLen = sizeof (xsl)/sizeof (XS _ENUMITEM) ;
XSULONG32 nIPAdd = 0x01020304;

XSULONG32 nEnumFlt = XS EF GE X;

XS HANDLE hCamera;

// Load the driver
XsLoadDriver (0) ;

// nListLen is the length of your XS ENUMITEM array
XsEnumCameras (&xsl[0], &nListLen, nEnumFlt);

// check if the first camera has an IP address

if (xs1[0].nLinkType==XS LT GIGAETH && xs1[0]. nGeCamIPAdd==0)

{
XsPreConfigCamera (xs1[0] .nCameralID,XSPP IP ADDRESS,nIPAdd);
// check if the first camera has an IP address
XsEnumCameras (&xsl1l[0], &nListLen);

}

XsOpenCamera (xsl1l[0] .nCamerald, &hCamera);
// Do something...

// Close the camera.

XsCloseCamera (hCamera);

// Unload the driver
XsUnloadDriver () ;

Sometimes the camera cannot be enumerated and the IP address cannot be set. In this
condition, if the user knows the camera MAC address, he can try to set the camera IP
address with the XsPreConfigCamera routine, the XSPP_IP_ADD_EX key and the
parameters below:

Reference Manual 69

IDT Cameras SDK

e nCameralD: the pointer to a string that contains the camera MAC address in the
format 00-00-00-00-00-00.

e nValuelLo: the camera IP address. The parameter that will be configured.

e nValueHi: the pointer to a string that contains the network adapter MAC address in
the format 00-00-00-00-00-00.

The sample below shows how to use this option

XSULONG32 nIPAdd = 0x01020304;
char szCamMAC[]="00-01-02-03-04-05";
char szAdpMAC[]="00-06-07-08-09-10";

// Load the driver
XsLoadDriver (0) ;

// try to give the camera an IP address
XsPreConfigCamera ((void *)szCamMac, XSPP_IP ADD EX,
(void *)nIPAdd, (void *)szAdpMAC) ;

// Unload the driver
XsUnloadDriver () ;

70 Reference Manual

IDT Cameras SDK

2.10.2. Asynchronous operations
Asynchronous routines are deprecated and should not be used anymore.

XsQueueOneFrame is the asynchronous grab function. Many frames can be queued up
at a time. The maximum number of frames that can be queued is 100. When the image is
acquired the application may receive a callback. The completed frame is removed from
the queue, and the next frame takes its place.

XsQueueCameraSettings is an asynchronous function used to change the camera
configuration.

The settings are placed on the same queue as your frames queued by
XsQueueOneFrame. Actions are guaranteed to occur in the order they are queued. If
you want to clear the queue, call XsAbort. As with XsQueueOneFrame, you may receive
a callback when the settings have been changed.

Reference Manual 71

IDT Cameras SDK

2.10.3. N cameras memory management (non pipeline)

In old N cameras the images are stored in 10 bit compressed format. The compression
may be configured by the parameter XSP_CMP_RATIO. The maximum number of frames
that can be captured in a single acquisition is 16,380 (MAX_N_ACQ_FRAMES). The
XsGetAddressList routine should be used to read the acquired frames. See the example
below.

unsigned int64 anAddList[1024];
XSULONG32 i,nSize;

// read the addresses (nFrames is the number of acquired images)
XsGetAddressList (anAddList, O, nFrames+1) ;

// read the frames
for(i=0; i<nFrames; i++)
{
// compute the real frame size
nSize = (XSULONG32) (anAddList[i+1]-anAddList[i]);
// read the frame
XsMemoryReadFrame (hCam, (XSULONG32)anAddList[i],
(XSULONG32) (anAddList[i]>>32),
nSize, pDatabuf);

2104. Trigger and Sync in cameras with two BNC

Some old cameras have only two BNC connectors in the back. A single input connector is
used to synchronize the acquisition with an external signal (sync in) or trigger the camera
and start the acquisition (event trigger).

The user may read the number of BNC connectors by calling the XsGetCameralnfo API
with the parameter XSI_BNC_CONNECTORS.

The table below shows the allowed parameters for 2 BNC.

XSP_REC_MODE XSP_SYNCIN_CFG XSP_TRIGIN_CFG

All values (the BNC is used to

XS_RM_NORMAL ; :
- = provide a sync signal)

Ignored (no BNC)

All values (the BNC is used to issue
XS_RM_CIRCULAR a trigger and the camera acquires at Ignored (no BNC)
internal rate)

72 Reference Manual

IDT Cameras SDK

2.10.5. Plus™ Mode

Plus™ is a compression feature that lets the camera acquire images at double speed and
double memory size.

Plus mode may be enabled or disabled by setting the XSP_PLUS parameter. A camera
supporting Plus mode returns 1 if the XSI_PLUS info parameter is read
(XsGetCameralnfo).

2.10.6. XDR™ Mode

The Extended Dynamic Range (XDR) is an IDT-proprietary implementation that uses a
capability of some IDT sensors. In XDR mode the camera dynamic range may be
enhanced to 11, 12 or 13 bit.

Imagine that we are taking a picture of a high contrast scene. In the picture we may have
a very bright portion (almost saturated) and a very dark portion that is almost black.

How can we change our exposure to have a good image? If we try to increase the
exposure to improve the dark part, we saturate the bright one. On the other side, if we
decrease to improve the bright part, we reduce the light to the dark portion and we loose
information.

The solution is XDR.

With XDR the Y4 camera uses a capability of the sensor that can acquire at two different
exposures at the same time: one of the pictures at lower exposure and one at higher
exposure.

Then the pictures are linearly combined to obtain a third picture with increased sensitivity.
The ratio between higher exposure and lower exposure gives the new pixel depth, which
can be 8, 10 or 11 bits for 8 bit images or 10, 11 and 12 bits for 10 bit images.

The parameters for the activation of XDR are:
XSP_EXP_MODE: set the parameter to the XS_EM_XDR value.

XSP_XDR_RATIO: set the ratio between exposures. The ratio determines the extended
pixel depth like in the table below.

XDR Ratio Extended Pixel depth
2 11 bit
4 12 bit
8 13 bit

XSP_PIX_DEPTH, XSP_IMG_FORMAT: when XDR is active, change the format to
generate an image with extended pixel depth.

XSP_XDR_CONTRAST: if the pixel depth is 8, the extended range image is converted to
8 bit with a logarithmic Look Up table.

Reference Manual 73

IDT Cameras SDK

3. SDK Reference

3.1. Initialization Functions

3.1.1. Overview: Initialization functions

Initialization functions allow the user to initialize the camera, enumerate the available
cameras, open and close them.

XsGetVersion returns the SDK version number (64 bit) and the demo flag.
XsLoadDriver loads the driver and initializes it.

XsUnloadDriver unloads the driver.

XsEnumCameras enumerates the cameras connected to the computer.
XsPreConfigCamera configures a camera parameter before opening it.
XsOpenCamera opens a camera.

XsOpenRawcamera opens a raw sequence like a virtual camera.

XsCloseCamera closes a camera previously open.

74 Reference Manual

IDT Cameras SDK

3.1.2. XsGetVersion

XS_ERROR XsGetVersion (PXSULONG32 *pVersionMS, PXSULONG32
*pVersionLS, PXSULONG32 *p/sDemo)

Return values

XS_SUCCESS if successful, otherwise

XS_E_GENERIC_ERROR if the version numbers could not be extracted from the driver.
Parameters

pVersionMS

Specifies the pointer to the variable that receives the most significant 32 bit of the version.
pVerMinor

Specifies the pointer to the variable that receives the least significant 32 bit of the version
plsDemo

Specifies the pointer to the variable that receives the demo flag; If 1, the driver is demo, if
O itisn't.

Remarks

This function must be called to retrieve the SDK version number and demo flag. If the
demo flag is returned TRUE, the currently installed driver does not require the presence
of the camera to operate. The MS and LS version fields contain an upper 16 bit word and
a lower one. The version is the made of four numbers.

See also:

Reference Manual 75

IDT Cameras SDK

3.1.3. XsLoadDriver

76

XS_ERROR XsLoadDriver (unsigned short nUSBNotify)
Return values

XS_SUCCESS if successful, otherwise

XS_E_HARDWARE_FAULT if any error occurs during the initialization.
Parameters

nUSBNotify

The parameter activates and deactivates the notification of disconnection of the USB
cable.

Remarks

The routine loads the driver DLL and initializes it. It must be called before any other
routine, except XsGetVersion. If any error occurs, the routine returns
XS_E_HARDWARE_FAULT. The user may retrieve the hardware error code by calling the
XsGetHardwareError routine.

If the nUSbNotify parameter is set to 1, the user receives announcements when the USB
cable of any Y or X camera is unplugged. To do so, he has to install a callback by calling
the XsSetAnnouncementCallback routine. For more information about installing the
announcement callback see the routine description and the Appendix E for a complete list
of announcements.

See also: XsUnloadDriver, XsGetHardwareError, XsSetAnnouncementCallback

Reference Manual

IDT Cameras SDK

3.1.4. XsUnloadDriver

void XsUnloadDriver (void)
Return values

None

Parameters

None

Remarks

This function must be called before terminating the application. This function frees any
memory and resource allocated by the driver and unloads it.

See also: XsLoadDriver

Reference Manual 77

IDT Cameras SDK

3.1.5. XsEnumCameras

XS_ERROR XsEnumCameras (PXS_ENUMITEM pltemList, XSULONG32
*pltemNr, XSULONG32 nEnumfFilt)

Return values

XS_SUCCESS if successful, otherwise

XS _E _HARDWARE_FAULT if any error occurs during the cameras enumeration.
XS_E_INVALID _ARGUMENTS, if any of the parameters is not valid.

Parameters

pltemList

Specifies the pointer to an array of XS_ENUMITEM structures

pltemNr

Specifies the pointer to the variable that receives the number of detected cameras
nEnumfFit

Specifies the enumeration filter

Remarks

The routine enumerates the active cameras and fills the XS_ENUMITEM structures with
information about them. This routine must be called before XsOpenCamera to find out
which cameras are available. The pltemNr variable must specify the number of structures
in the pltemList array and receives the number of enumerated cameras. The nEnumFlt
variable specifies which camera type is going to be enumerated. If any error occurs, the
routine returns XS_E_HARDWARE_FAULT. Then the user may retrieve the hardware

error code by calling the XsGetHardwareError routine.

See also: XsOpenCamera, XsGetHardwareError

78 Reference Manual

IDT Cameras SDK

3.1.6. XsPreConfigCamera

XS_ERROR XsPreConfigCamera (void *nCamerald, XS_PRE_PARAM
nParamKey, void *nValuelLo, void *nValueH|)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_CAMERA_ID, if the camera ID is not valid.

XS _E_CAM_ALREADY_OPEN, if the camera is open.

XS_E_HARDWARE_FAULT if any error occurs during the camera pre-configuration.
XS_E_NOT_SUPPORTED, if the parameter is not supported.

Parameters

nCamerald

Specifies the ID of the camera to be opened

nParamKey

Specifies which parameter is to be configured

nValuelLo

Specifies the LS part of the parameter

nValueHi

Specifies the MS part of the parameter

Remarks

The routine configure a camera parameter before the camera is open. This routine must
be called before XsOpenCamera to set a parameter that is important for the connection.
The nParamKey specifies which parameter to configure. Some parameters are useful for
all the cameras and the camera ID value is ignored. For Giga-Ethernet cameras the
routine is used to configure the network adapter IP address, the camera IP address or the
network performance. If any error occurs, the routine returns XS_E_HARDWARE_FAULT.
Then the user may retrieve the hardware error code by calling the XsGetHardwareError

routine. For a list of the pre-configuration parameter indexes, refer to the appendix.

See also: XsGetHardwareError

Reference Manual 79

IDT Cameras SDK

3.1.7. XsOpenCamera

80

XS_ERROR XsOpenCamera (XSULONG32 nCamerald, XS_HANDLE*
pHandle)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_CAMERA _ID, if the camera ID is not valid.

XS_E_HARDWARE_FAULT if any error occurs during the camera opening.

Parameters

nCamerald

Specifies the ID of the camera to be opened

pHandle

Specifies the pointer to the variable that receives the camera handle

Remarks

The routine opens the camera with the nCamerald ID. The value can be retrieved by
calling the XsEnumCameras routine (see the XS_ENUMITEM structure). If any error
occurs during the camera opening, the routine returns XS_E_HARDWARE_FAULT. Then
the user may retrieve the hardware error code by calling the XsGetHardwareError

routine.

See also: XsCloseCamera, XsGetHardwareError

Reference Manual

IDT Cameras SDK

3.1.8. XsOpenRawCamera

XS_ERROR XsOpenRawCamera (const char * IpszRawFilePath,
XS_HANDLE* pHandle)

Return values

XS_SUCCESS if successful, otherwise

XS _E_INVALID_CAMERA _ID, if the raw path is not valid.

XS_E_HARDWARE_FAULT if any error occurs during the camera opening.

Parameters

IpszRawFilePath

Specifies the full path to the raw file

pHandle

Specifies the pointer to the variable that receives the virtual camera handle

Remarks

The routine opens the RAW file with path [pszRawFilePath. The variable may contain be
the full path to the rawfile.xml file or the full path to the directory that includes the file and

the raw sequence.

See also: XsCloseCamera

Reference Manual 81

IDT Cameras SDK

3.1.9. XsCloseCamera

82

XS_ERROR XsCloseCamera (XS_HANDLE hCamera)
Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
Parameters

hCamera

Specifies the handle to an open camera

Remarks

Closes an open Camera

See also: XsOpenCamera

Reference Manual

IDT Cameras SDK

3.2. Configuration Functions

3.2.1. Overview: Configuration functions
The configuration functions allow the user to control the status of the camera.

XsGetCameralnfo gets information from the camera, such as camera model, firmware
version, sensor type, sensor model, etc.

XsSetCameralnfo sets information to the camera, such as camera name.

XsReadDefaultSettings reads default settings from the camera and fills the
XS_SETTINGS opaque structure.

XsReadCameraSettings reads current settings from the camera and fills the
XS _SETTINGS opaque structure.

XsRefreshCameraSettings sends an updated XS_SETTINGS structure to the camera
and refreshes the camera settings.

XsValidateCameraSettings validates and updates a camera state.
XsReadSettingsFromFlash reads the camera settings from the onboard flash memory.
XsWriteSettingsToFlash writes the camera settings to the onboard flash memory.
XsQueueCameraSettings queues camera settings.

XsSetParameter sets one of the camera parameters in the XS_SETTINGS opaque
structure.

XsGetParameter gets one of the parameters from the XS_SETTINGS opaque structure.

XsGetParameterAttribute gets a parameter's attribute, such as minimum value,
maximum value, etc.

XsCalibrateNoiseReduction computes the reference image data used to reduce the
acquisition noise.

XsReset resets the camera.
XsReadUserDataFromFlash reads a block of user data from the camera flash memory.
XsWriteUserDataToFlash writes a block of user data to the camera flash memory.

XsReadCameraSettingsArray reads an array of camera configurations from the DDR or
SSD.

Reference Manual 83

IDT Cameras SDK

3.2.2. XsGetCameralnfo

XS_ERROR XsGetCameralnfo (XS_HANDLE hCamera, XS_INFO ninfoKey,
XSULONG32 *pValueLo, XSULONG32 *pValueH|)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_NOT_SUPPORTED, if the ninfoKey is not supported.

Parameters

hCamera

Specifies the handle to an open camera

ninfoKey

Specifies which parameter the function has to return

pValuelLo

Specifies the pointer to the variable that receives the LS part of the info value

pValueHi

Specifies the pointer to the variable that receives the MS part of the info value

Remarks

This function returns camera specific information, such as sensor type or version
numbers, generally state-independent information. See the Appendix B for a list of all the

available ninfoKey values.

See also: XsSetCameralnfo

84 Reference Manual

IDT Cameras SDK

3.2.3. XsSetCameralnfo

XS_ERROR XsSetCameralnfo (XS_HANDLE hCamera, XS_INFO ninfoKey,
XSULONG32 nValueLo, XSULONG32 nValueHi)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_NOT_SUPPORTED, if the ninfoKey is not supported.

Parameters

hCamera

Specifies the handle to an open camera

ninfoKey

Specifies which parameter the function has to return

nValuelLo

Specifies the LS part of the info value

nValueHi

Specifies the MS part of the info value

Remarks

This function sets camera specific information. Some of the info parameters can be
changed, such as camera name. See the Appendix B for a list of all the available

ninfoKey values.

See also: XsGetCameralnfo

Reference Manual 85

IDT Cameras SDK

3.2.4. XsReadDefaultSettings

86

XS_ERROR XsReadDefaultSettings (XS_HANDLE hCamera, PXS_SETTINGS
pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.

Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure to be filled with the camera settings

Remarks

This function reads the default settings of the specified camera and fills the
XS_SETTINGS structure. The structure is opaque and can be accessed only through the
XsGetParameter and XsSetParameter functions. To change a parameter on the camera,
the entire structure must be sent to the driver, using the XsRefreshCameraSettings

function. The default state is specific to each individual camera.

See also: XsGetParameter, XsSetParameter, and XsRefreshCameraSettings

Reference Manual

IDT Cameras SDK

3.2.5. XsReadCameraSettings

XS_ERROR XsReadCameraSettings (XS_HANDLE hCamera,
PXS_SETTINGS pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.

Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure to be filled with the camera settings

Remarks

This function reads the current settings of the specified camera and fills the
XS_SETTINGS structure. The structure is opaque and can be accessed only through the
XsGetParameter and XsSetParameter functions. To change a parameter on the camera,
the entire structure must be sent to the driver, using the XsRefreshCameraSettings

function.

See also: XsGetParameter, XsSetParameter, XsRefreshCameraSettings

Reference Manual 87

IDT Cameras SDK

3.2.6. XsRefreshCameraSettings

88

XS_ERROR XsRefreshCameraSettings(XS_HANDLE
PXS_SETTINGS pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure that contains the camera settings

Remarks

hCamera,

The state contained in the XS_SETTINGS structure is validated, modified if necessary,
and then sent to the camera. The structure is opaque and can be accessed only through

the XsGetParameter and XsSetParameter functions.

See also: XsReadDefaultSettings, XsReadCameraSettings

Reference Manual

IDT Cameras SDK

3.2.7. XsValidateCameraSettings

XS_ERROR XsValidateCameraSettings (XS_HANDLE hCamera,
PXS_SETTINGS pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure that contains the camera settings
Remarks

The state contained in the XS_SETTINGS structure is validated and modified if
necessary.

See also: XsReadDefaultSettings, XsReadCameraSettings

Reference Manual 89

IDT Cameras SDK

3.2.8. XsReadSettingsFromFlash

XS_ERROR XsReadSettingsFromFlash (XS_HANDLE hCamera,
PXS_SETTINGS pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_NOT_SUPPORTED, if the camera does not have flash memory
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.

XS_E _NOT_IN_FLASH, if the configuration is not stored in the flash memory
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure that contains the camera settings
Remarks

The routine copies the content of the pSettings structure to the camera flash memory.

See also: XsWriteSettingsToFlash

90 Reference Manual

IDT Cameras SDK

3.2.9. XsWriteSettingsToFlash

XS_ERROR XsWriteSettingsToFlash (XS_HANDLE hCamera,
PXS_SETTINGS pSettings)

Return values

XS_SUCCESS if successful, otherwise

XS_E_NOT_SUPPORTED, if the camera does not have flash memory
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure that contains the camera settings
Remarks

The routine reads from the camera flash memory the configuration and copies it to the
pSettings structure.

See also: XsReadSettingsFromFlash

Reference Manual 91

IDT Cameras SDK

3.2.10. XsQueueCameraSettings

XS_ERROR XsQueueCameraSettings (XS_HANDLE hCamera,
PXS_SETTINGS pSettings, XS_AsyncCallback pfnCallback, XSULONG32
nFlags, void *pUserData)

Return values

SVC_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the structure that contains the camera settings
pfnCallback

Specifies the pointer to the callback routine; the routine is called by the driver when the
settings are changed. See XS_AsyncCallback.

nFlags

Specifies the flags; see Appendix D

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
Remarks

This function queues up a change to the camera state. This function returns immediately.
When the camera state has changed, you will receive a callback if desired.

See also: XsRefreshCameraSettings

92 Reference Manual

IDT Cameras SDK

3.2.11. XsSetParameter

XS_ERROR XsSetParameter (XS_HANDLE hCamera, PXS_SETTINGS
pSettings, XS_PARAM nParamKey, XSULONG32 nValue)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
XS_E_NOT_SUPPORTED, if the nParamKey is not supported.

Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the XS_SETTINGS structure the parameter is written to.
nParamKey

Specifies which parameter the function sets.

nValue

Specifies the parameter's value

Remarks

This function writes a parameter to the opaque XS_SETTINGS structure. The parameter
will not change on the camera until the entire structure is sent to the driver by calling the
XsRefreshCameraSettings or XsQueueCameraSettings functions.

See also: XsGetParameter, XsRefreshCameraSettings, and XsQueueCameraSettings

Reference Manual 93

IDT Cameras SDK

3.2.12. XsGetParameter

94

XS_ERROR XsGetParameter (XS_HANDLE hCamera,
pSettings, XS_PARAM nParamKey, XSULONG32 *pValue)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
XS_E_NOT_SUPPORTED, if the nParamKey is not supported.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

PXS_SETTINGS

Specifies the pointer to the XS_SETTINGS structure the parameter is read from

nParamKey

Specifies which parameter the function returns
pValue

Specifies the pointer to the parameter's value

Remarks

This function reads a parameter from the opaque XS_SETTINGS structure.

See also: XsSetParameter

Reference Manual

IDT Cameras SDK

3.2.13. XsGetParameterAttribute

XS_ERROR XsGetParameterAttribute (XS_HANDLE hCamera,
PXS_SETTINGS pSettings, XS_PARAM nParamKey, XS_ATTRIBUTE
nParamAttr, XSULONG32 *pValue)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_INVALID_CFG, if the XS_SETTINGS structure is not valid.
XS_E_NOT_SUPPORTED, if the nParamKey is not supported.
Parameters

hCamera

Specifies the handle to an open camera

pSettings

Specifies the pointer to the XS_SETTINGS structure the parameter is read from.
nParamKey

Specifies which parameter the function returns.

nParamAfttr

Specifies which attribute the function returns.

pValue

Specifies the pointer to the parameter's attribute value.

Remarks

This function reads a parameter attribute depending on the nParamAttr value. It may be:
minimum value, maximum value or read-only attribute (see Appendix D).

See also: XsGetParameter

Reference Manual 95

IDT Cameras SDK

3.2.14. XsCalibrateNoiseReduction

XS_ERROR XsCalibrateNoiseReduction (XS_HANDLE hCamera,
XSULONG32 nOpCode, XS_ProgressCallback pfnCallback, void * pUserData)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_CAMERA_ID, if the camera ID is not valid.

XS _E _NOT_SUPPORTED, if the specified operation is not supported.
XS_E_NOT_IN_FLASH, if the calibration file is not stored in the camera flash memory.
XS_E_ABORTED, if the procedure has been aborted.

XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nOpCode

Specifies the calibration operation to do

pfnCallback

Specifies the pointer to the callback routine; the routine is called by the driver during the
calibration operation. See the XS_ProgressCallback in the Appendix

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
Remarks

This routine computes the reference image data used to reduce the noise on acquired
images. The calibration operation depends on the value of the nOpCode parameter. For

further information, refer to the paragraph 2.8.

See also:

96 Reference Manual

IDT Cameras SDK

3.2.15. XsReset

XS_ERROR XsReset (XS_HANDLE hCamera)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera
Remarks

This routine resets the camera. The camera is reset and automatically re-configured with
the current parameters.

See also:

Reference Manual 97

IDT Cameras SDK

3.2.16. XsReadUserDataFromFlash

XS_ERROR XsReadUserDataFromFlash (XS_HANDLE hCamera,
XSULONG32 nType, XSULONG32 nDatalDOrOffset, XSULONG32 *pnSize,
void *pDataBuff)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E _NOT_SUPPORTED, if the routine is not supported.

XS _E NOT_IN_FLASH, if the data is not stored in the flash memory.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera

nType

Specifies the type of operation (0: read from flash, 1: read from memory)

nDatalDOrOffset

Specifies the unique ID that identifies the data for flash operation, or the offset in 2048
bytes blocks for memory operation

pnSize

Specifies the pointer to the variable that receives the data size

pDataBuff

Specifies the buffer that receives the stored data

Remarks

This routine reads a buffer of user data from the camera flash or RAM memory. The
unique ID is a number that identifies the data block. The Offset is specified in number of
blocks (each block is 2048 bytes).

See also: XsWriteUserDataToFlash

98 Reference Manual

IDT Cameras SDK

3.2.17. XsWriteUserDataToFlash

XS_ERROR XsWriteUserDataToFlash (XS_HANDLE hCamera, XSULONG32
nType, XSULONG32 nDatalDOrOffset, XSULONG32 nSize, void *pDataBuff)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E _NOT_SUPPORTED, if the routine is not supported.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera

nType

Specifies the type of operation (0: write to flash, 1: write to memory)

nDatalDOrOffset

Specifies the unique ID that identifies the data for flash operation, or the offset in 2048
bytes blocks for memory operation

nSize

Specifies the size of the data block

pDataBuff

Specifies the buffer that contains the data to store

Remarks

This routine writes a buffer of user data to the camera flash or RAM memory. The unique
ID is a number that identifies the data block. The Offset is specified in number of blocks
(each block is 2048 bytes).

See also: XsReadUserDataFromFlash

Reference Manual 99

IDT

Cameras SDK

3.2.18. XsReadCameraSettingsArray

100

XS_ERROR XsReadCameraSettingsArray (XS_HANDLE hCamera,
XSULONG32 nOption, PXS_SETTINGS pCfgListt PXS_BROC pBroclList,
PXSULONG32 pnCfgCnt)

Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_NOT_SUPPORTED, if the routine is not supported.
Parameters

hCamera

Specifies the handle to an open camera

nOption

Specifies the source (0: camera memory 1: SSD)

pCfglList

Specifies an array of camera configuration structures
pBroclList
Specifies an array XS_BROC structures (it may be null)

pnCfgCnt

Specifies the pointer to the variable that receives the number of configurations stored in
the SSD

Remarks

This routine reads an array of camera configurations stored in the camera DDR (if the
option parameter is 0) or in the SSD (if the option parameter is 1). Each configuration
corresponds to a set of images stored in the DDR/SSD. The variable pnCfgCnt is a
pointer to a variable that has a double meaning. Before calling the routine the user should
set the value equal to the number of items in the array. When the routine is returned, the
variable contains the number of structures stored in the DDR/SSD. The information stored
in the array may be used to read the images from the camera and download them to the
local hard disk. If the images have been recorded in BROC mode, the corresponding
XS_BROC section may be used to sort the images.

See also: XsMemoryReadFromDisk, XsEraseDisk

Reference Manual

IDT Cameras SDK

3.3. Preview Mode Grab Functions

3.3.1. Overview: Preview Mode Grab functions
Grab functions allow the user to capture streamed data from the digital camera.
The grab process may be performed in two ways:

* Synchronous: calling XsSynchGrab function.

* Asynchronous: calling XsQueueOneFrame function.

Both methods use the XS_FRAME structure to grab the data.

XsSynchGrab grabs one frame synchronously (two in double exposure).
XsQueueOneFrame grabs one frame asynchronously (two in double exposure).
XsLive starts and stops fast live on Os cameras.

XsAbort aborts any pending asynchronous grab.

Reference Manual 101

IDT Cameras SDK

3.3.2. XsSynchGrab

102

XS_ERROR XsSynchGrab (XS_HANDLE hCamera, PXS_FRAME pFrame,
XSULONG32 nTimeOut)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.
XS_E_BUFFER_TOO_SMALL, if the frame buffer is too small for the image.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

XS_E_TIMEOUT, if the frames have not been acquired within the time out value.
Parameters

hCamera

Specifies the handle to an open camera

pFrame

Specifies the pointer to a XS_FRAME structure; the structure is used to acquire the frame
nTimeOut

Specifies the grab time out in ms

Remarks

This function grabs synchronously one frame (or two in double exposure mode). Before
calling the routine the user must fill some of the XS_FRAME structure fields (pBuffer: the
pointer to the data, nBufSize: the size of the data buffer in bytes, nlmages: the number
of images, e.g. 1 in single exposure or 2 in double exposure). The routine returns when

the frames have been acquired or after the timeout (synchronous grab).

See also: XsQueueOneFrame

Reference Manual

IDT Cameras SDK

3.3.3. XsQueueOneFrame (deprecated)

XS_ERROR XsQueueOneFrame (XS_HANDLE hCamera, PXS_FRAME
pFrame, XS_AsyncCallback pfnCallback, XSULONG32 nfFlags, void
*pUserData)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_BUFFER_TOO_SMALL, if the frame buffer is too small for the image.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera

pFrame

Specifies the pointer to the frame structure

pfnCallback

Specifies the pointer to the callback routine; the routine is called by the driver when the
settings are changed. See the XS_AsyncCallback in the Appendix

nFlags

Specifies the flags; see Appendix

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
Remarks

This functions queues a frame buffer and returns immediately. It's used for asynchronous
acquisitions. Before calling the routine the user must fill some of the XS_FRAME structure
fields (see XsSynchGrab routine). When the frame has been captured the pfnCallback
routine is called. The frame structure and the associated data buffer must persist until the

frame has been grabbed.

See also: XsSynchGrab

Reference Manual 103

IDT

Cameras SDK

3.3.4. XsLive

104

XS_ERROR XsLive (XS_HANDLE hCamera, XS_LIVE nCmd)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E NOT_SUPPORTED, if the routine is not supported.
XS_E_INVALID_ARGUMENTS, if one of the arguments is not valid.

XS_E _HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nCmd

Specifies the live command

Remarks

This routine starts or stops the fast live mode in Os cameras. If the nCmd variable is set
to XS_LIVE_START the fast live is enabled. Then the user may read the live image by
calling the XsMemoryPreview routine. Then the live mode should be closed with nCmd

set to XS_LIVE_STOP. If the live mode is not closed the camera cannot start a recording.

See also:

Reference Manual

IDT Cameras SDK

3.3.5. XsAbort

XS_ERROR XsAbort (XS_HANDLE hCamera)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

Parameters

hCamera

Specifies the handle to an open camera

Remarks

This function stops all the pending grab operations and clears the queue. After the
function has returned no more XsQueueOneFrame or XsQueueCameraSettings callbacks

OcCcCur.

See also: XsQueueCameraSettings, XsQueueOneFrame

Reference Manual 105

IDT Cameras SDK

3.4. Camera Memory Grab Functions

3.4.1. Overview: Camera Memory Mode Grab functions

Camera Memory Grab functions allow the user to capture data into the camera RAM
memory, check the capture status and red the captured data into the PC memory.

XsMemoryStartGrab starts an acquisition in the camera memory.
XsMemoryStopGrab stops an acquisition in the camera memory.

XsMemoryPreview reads the latest acquired frame during an acquisition and/or reads
the number of frames acquired so far.

XsMemoryReadFrame reads a frame from the camera memory.
XsMemoryReadTriggerPosition checks the acquisition triggered frame.
XsMemoryDownloadRawFrame downloads an image into a RAW file.
XsGetAddressList gets a list of addresses of the acquired frames (N-series).
XsEraseMemory erases the memory in the HG camera models.

XsTrigger issues a software trigger to the camera.

XsGetBrocParameters reads information about the current BROC sections.
XsMemoryReadFromDisk reads images form the SSD into the camera memory.

XsEraseDisk erases the images from the SSD.

106 Reference Manual

IDT Cameras SDK

3.4.2. XsMemoryStartGrab

XS_ERROR XsMemoryStartGrab (XS_HANDLE hCamera, XSULONG32
nStartAddLo, XSULONG32 nStartAddHi, XSULONG32 nFrames, XSULONG32
nPreTrigFrames, XS_AsyncCallback pfnCallback, XSULONG32 nFlags, void
*pUserData)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID HANDLE, if the camera handle is not valid.

XS_E_BUSY, if the camera is busy and the command cannot be performed.
XS_E _HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address
nFrames

Specifies the number of frames which have to be acquired
nPreTrigFrames

Specifies the number of frames to be acquired before the trigger; it's valid only if the
trigger source is a single pulse.

pfnCallback

Specifies the pointer to the callback routine; the routine is called by the driver when the
acquisition is completed or any error occurred. See the XS_AsyncCallback in the
Appendix.

nFlags
Specifies the flags; see Appendix.
pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.

Remarks

This function starts an acquisition in the camera memory and returns immediately. When
the frames have been captured or any error occurred the pfnCallback routine is called.

See also: XsMemoryStopGrab

Reference Manual 107

IDT

Cameras SDK

3.4.3. XsMemoryStopGrab

108

XS_ERROR XsMemoryStopGrab (XS_HANDLE hCamera, XSULONG32
*pnAcqFrames)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera.

pnAcqFrames

Specifies the pointer to the variable that receives the number of frames acquired so far.
Remarks

This function stops any camera memory acquisition previously started. The routine
returns the number of frames that the camera has acquired after the stop. The value is

stored in the variable pointed by pnAcgFrames.

See also: XsMemoryStartGrab

Reference Manual

IDT Cameras SDK

3.4.4. XsMemoryPreview

XS_ERROR XsMemoryPreview (XS_HANDLE hCamera, PXS_FRAME
pFrame, XSULONG32 *pnFramelndex)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS _E_INVALID _ARGUMENTS, if the routine arguments are not valid.

XS_E_BUSY, if the camera is busy and the command cannot be performed.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera
pFrame

Specifies the pointer to the frame structure
pnFramelndex

Specifies the pointer to the variable which receives the index of the latest acquired frame.

Remarks

This routine may be called during an acquisition in camera memory and it may do two
operations: read the latest acquired frame into a XS _FRAME structure or read the
number of frames acquired so far. One of the two additional parameters (pFrame or
pnFramelndex) may be NULL. The routine may be called to preview an acquisition. For
further information about the XS_FRAME structure, see the XsSynchGrab topic.

Reference Manual 109

IDT Cameras SDK

3.4.5. XsMemoryReadFrame

XS_ERROR XsMemoryReadFrame (XS_HANDLE hCamera, XSULONG32
nStartAddLo, XSULONG32 nStartAddHi, XSULONG32 nFrameldxOrSize, void*
pDataBuff)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E_BUSY, if the camera is busy and the command cannot be performed.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address
nFrameldxOrSize

Specifies the index or the size of the frame to read

pDataBuff

Specifies the pointer to the buffer where the data has to be copied.

Remarks

This function reads a single frame from the camera memory into the specified buffer. The
user must specify the starting address and the index of the frame. If a sequence of N
frames has been acquired starting from address M, all the frames can be read by calling
the routine with the same start address (M) and with index values from 0 to N-1. The
driver uses the current camera settings to compute the frame size. The user must be sure
that the current camera settings (Image format, pixel depth, etc.) are the same set before
the acquisition.

For N cameras the user specifies the address of the frame (after a call to
XsGetAddressList) and its size. If the user specifies 0 as size, the driver computes the
size of the frame from the current settings.

For further information, please refer to “Multiple Acquisitions” and “Camera Memory
Management” topics.

See also: XsMemoryStartGrab, XsMemoryStopGrab, XsGetAddressList

110 Reference Manual

IDT Cameras SDK

3.4.6. XsMemoryDownloadRawFrame

XS_ERROR XsMemoryDownloadRawFrame (XS_HANDLE hCamera, const
char *IpszRawFilePath, XSULONG32 nStartAddLo, XSULONG32 nStartAddHi,
XSULONG32 nFrameldx, XSULONG32 nPageldx, XSULONG32 nTotFrames)

Return values
XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E_BUSY, if the camera is busy and the command cannot be performed.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera.

InszRawFilePath

Specifies the full path of the RAW file.

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address.
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address.
nFrameldx

Specifies the index of the frame in camera memory.

nPageldx

Specifies the index of the frame in the sequence (0 to nTotFrames).

nTotFrames

Specifies the total number of downloaded frames.

Remarks

This function downloads a frame from the camera memory into the specified Raw file. The
full path of the Raw file may be specified without the extension because the driver will ad
a “raw” extension to it. The user must specify the starting address and the index of the
frame in camera memory. If a sequence of N frames has been acquired in circular mode,
the position of the trigger index (T) should be read and the frames indexes should be
ordered (see the example in chapter 2 “Using the SDK”). Also, the pages index (from 0 to
N-1) and the total number of frames (N) must be specified.

See also: XsMemoryStartGrab, XsMemoryStopGrab

Reference Manual 1M

IDT Cameras SDK

3.4.7. XsMemoryReadTriggerPosition

112

XS_ERROR XsMemoryReadTriggerPosition (XS_HANDLE hCamera,
XSULONG32* pnTriggerPosLo, XSULONG32* pnTriggerPosHi, XSULONG32*
pnTriggerindex, XSULONG32* pnTriggerTime)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera

pnTriggerPosLo

Specifies the pointer to the variable which receives the low order 32 bit value of the
address of the triggered frame in the sequence

pnTriggerPosHi

Specifies the pointer to the variable which receives the high order 32 bit value of the
address of the triggered frame in the sequence

pnTriggerindex

Specifies the pointer to the variable which receives the index of the triggered frame in the
sequence

pnTriggerTime

Specifies the pointer to the variable which receives the time between the sync and the
trigger in the acquisition period

Remarks

This function is valid only if the record mode parameter has been set to
XS_RM_CIRCULAR. The returned value is a 64 bit address in the camera memory and
an index in the acquired sequence. The returned values are valid until a new acquisition
or snap APl is called.

See also: XsMemoryStartGrab

Reference Manual

IDT Cameras SDK

3.4.8. XsGetAddressList (N-series)

XS_ERROR XsGetAddressList (XS_HANDLE hCamera, XSULONG32
nStartldx, XSULONG32 nAddressCount, unsigned __int64* pnAddrList)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nStartldx

Specifies the index of the first frame of the list

nAddressCount

Specifies the number of addresses to read

pnAddrList

Specifies the pointer to a buffer of 64-bit unsigned integers that will receive the addresses
Remarks

This function is valid only if the camera is an N-series camera. The returned values are
64 bit addresses in the camera memory linear space. The frames are compressed and
the size of each frame is non constant. After each acquisition the user should call

XsGetAddressList and use the list to read each acquired frame.

See also:

Reference Manual 113

IDT Cameras SDK

3.4.9. XsEraseMemory

114

XS_ERROR XsEraseMemory (XS_HANDLE hCamera)
Return values
XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters
hCamera
Specifies the handle to an open camera

Remarks

The routine is called to erase the memory of HG cameras. If the memory is not erased the

user cannot start a new acquisition.

See also: XsMemoryStartGrab

Reference Manual

IDT Cameras SDK

3.4.10. XsTrigger

XS_ERROR XsTrigger (XS_HANDLE hCamera)
Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS _E NOT_SUPPORTED, if the function is not supported.
XS_E_NOT_RECORDING, if the camera is not in recording.
XS _E_BUSY, if the camera is busy.

XS_E _HARDWARE_FAULT, if any error occurs while calling the driver.
Parameters

hCamera

Specifies the handle to an open camera

Remarks

The routine is called to issue a software event trigger to the camera. It can be called when
the camera is recording in circular mode.

See also: XsMemoryStartGrab

Reference Manual 115

IDT Cameras SDK

3.4.11. XsGetBrocParameters

116

XS_ERROR XsGetBrocParameters(XS_HANDLE hCamera,
PXS_BROC_SECTION pBrocSectArray, XSULONG32 nSize)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMANTS, , if the routine arguments are not valid.
XS_E_NOT_SUPPORTED, if the function is not supported.

Parameters

hCamera

Specifies the handle to an open camera.

PXS_BROC_SECTION

Specifies the pointer to n array of structures.

nSize

Specifies the number of items in the array.

Remarks

The routine is called to read addresses and frames positions after a BROC acquisition.
The information of each segment is stored in a XS_BROC_SECTION structure and
includes starting address, position of the first frame and time from trigger.

See also: XsMemoryStartGrab

Reference Manual

IDT Cameras SDK

3.4.12. XsMemoryReadFromDisk

XS_ERROR XsMemoryReadFromDisk (XS_HANDLE hCamera, XSULONG32
nMemDstAddLo, XSULONG32 nMemDstAddHi, XSULONG32 nDiskSrcAddLo,
XSULONG32 nDiskSrcAddHi, XSULONG32 nStartldx, XSULONG32 nStopldx,
XS_ProgressCallback pfnCallback, void *pUserData)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if the routine arguments are not valid.
XS _E NOT_SUPPORTED, if the function is not supported.
Parameters

hCamera

Specifies the handle to an open camera.

nMemDstAddLo, nMemDstAddHi

Specifies the address in camera memory where the images should be copied.

nDiskSrcAddLo, nDiskSrcAddHi

Specifies the address in the SSD from which the images should be copied.

nStartldx, nStopldx

Specifies the start and stop indexes of the images to copy.

pfnCallback

Specifies a pointer to the callback routine that will be called from progress

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
Remarks

The routine transfers data from the SSD into the camera memory. The address in the
camera memory may be always 0. The address in the SSD space is where the images
are stored. The number of transferred frames must fit into the DDR. If the full acquisition
does not fit into the DDR the number of frames (nStartldx - nStopldx + 1) should be a
multiple of 256.

See also:

Reference Manual 117

IDT Cameras SDK

3.4.13. XsEraseDisk

118

XS_ERROR XsEraseDisk (XS_HANDLE hCamera)
Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS _E NOT_SUPPORTED, if the function is not supported.
Parameters

hCamera

Specifies the handle to an open camera.

Remarks

The routine erases all the images stored in the camera SSD.

See also:

Reference Manual

IDT Cameras SDK

3.5. Miscellaneous Functions

3.5.1. Overview: Miscellaneous functions
Miscellaneous functions allow the user to read hardware error codes and strings.

XsGetHardwareError reads the hardware error code and returns the error string related
to the code.

XsReadGPSTiming read the IRIG/GPS data from the camera.
XsEnableDiagnosticTrace enables or disables the diagnostic trace.

XsEnableRawMode sets the camera image format to grayscale and allows reading the
Bayer raw data from color cameras.

XsGetCameraStatus reads the camera status to check if the acquisition is done.
XsSetAnnouncementCallback installs an announcement callback routine.
XsReadBorderData reads border data from the camera.

XsAttach attaches to a camera and takes the control of it

XsConfigureWriteToDisk activates and deactivates direct write to disk with M, Pcie and
XS-Mini cameras.

XsReadToVideo sends live images or playbacks acquired frames to the HDMI output
(new design cameras only).

XsLoadLookupTable loads a user-define lookup table.
XsEnableResize has been removed because deprecated.
XsVideoPlayback activates and deactivates the asynchronous playback of images on

the video (HDMI) output. The routine returns immediately. The status of the playback may
be checked with a call to XsGetCameraStatus.

Reference Manual 119

IDT Cameras SDK

3.5.2. XsGetHardwareError

120

XSULONG32 XsGetHardwareError (XS_HANDLE hCamera, char* pszBuffer,
XSULONG32 nSize)

Return values

The latest hardware error code

Parameters

hCamera

Specifies the handle to an open camera

pszBuffer

Specifies the character buffer which receives the error string

nSize

Specifies the size in bytes of the char buffer

Remarks

If any of the driver’s API returns XS_E_HARDWARE_FAULT, the hardware related error
may be retrieved by calling XsGetHardwareError. The function returns the hardware error
occurred after the latest camera operation. Also, the function fills the pszBuffer buffer with

a message that describes the returned error code.

See also:

Reference Manual

IDT Cameras SDK

3.5.3. XsReadGPSTiming

XS_ERROR XsReadGPSTiming (XS_HANDLE hCamera, XSULONG32
nOption, PXS_GPSTIMING pGPS)

Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_NOT_SUPPORTED, if the option is not supported
Parameters

hCamera

Specifies the handle to an open camera

nOption

Specifies from which source the data is read (0: from the current frame, 1:from the
camera)

pGPS

Specifies the pointer to the XS_GPSTIMING structure that stores the data

Remarks

This routine reads the IRIG/GPS data from the current frame or from the camera. The
current frame is the latest frame that has been read from the camera. The strucutre
returns timing information and it can alos return if the signal is currently locked. The
IRIG/GPS capability is active if the XSP_SYNCIN_CFG parameter is set to
XS_SIC_IRIG_DTS_INT, XS_SIC_IRIG_DTS_EXT, XS_SIC_1PPS.

See also:

Reference Manual 121

IDT Cameras SDK

3.5.4. XsEnableDiagnosticTrace

XS_ERROR XsEnableDiagnosticTrace (XS_HANDLE hCamera, char*
pszTraceFilePath, XSULONG32 nEnable)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

Parameters

hCamera

Specifies the handle to an open camera

pszTraceFilePath

Specifies the path of the diagnostic file

nEnable

Specifies the enable/disable flag

Remarks

The routine enables or disables the driver diagnostic trace. The pszTraceFilePath
specifies the path of the diagnostic file and the nEnable flag enables (1) or disables (0)

the trace.

See also:

122 Reference Manual

IDT Cameras SDK

3.5.5. XsEnableRawMode

XS_ERROR XsEnableRawMode (XS_HANDLE hCamera, XSULONG32
nEnable)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

Parameters

hCamera

Specifies the handle to an open camera

nEnable

Specifies the enable/disable flag

Remarks

The routine enables or disables the camera raw mode in color cameras. If the raw mode
is enabled, the image format is automatically set to gray-scale and the user can read the

raw Bayer frame from the camera memory.

See also:

Reference Manual 123

IDT Cameras SDK

3.5.6. XsGetCameraStatus

XS_ERROR XsGetCameraStatus (XS_HANDLE hCamera, XSULONG32
*pnisBusy, XSULONG32 *pnStatus, XSULONG32 *pnErrCode, XSULONG32
*pninfo1, XSULONG32 *pninfo2, XSULONG32 *pninfo3)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

Parameters

hCamera

Specifies the handle to an open camera

pnlsBusy

Specifies the pointer to the variable that receives the busy flag

pnStatus

Specifies the pointer to the variable that receives the camera status

pnErrCode

Specifies the pointer to the variable that receives the error code

pninfo1, pninfo2, pninfo3

Specify the pointers to the variables that receive info parameters

Remarks

The routine reads the camera busy flag and the status. The camera status values are
listed in the XS_STATUS constants. The routine may be used during an acquisition to
check if the camera has finished acquiring.

See also:

124 Reference Manual

IDT Cameras SDK

3.5.7. XsSetAnnouncementCallback

XS_ERROR XsSetAnnouncementCallback (XS_HANDLE hCamera,
XS_AnnouncementCallback pfnCallback, void *pUserData)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

Parameters

hCamera

Specifies the handle to an open camera

pfnCallback

Specifies the pointer to the callback routine; the routine is called by the driver any time a
camera changes its status. For more info, see the XS_AnnouncementCallback topic in

the Appendix G.

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
Remarks

The routine defines an announcement callback for the cameras. If the camera status
changes, the camera autonomously sends messages called announcements. The
callback intercepts those announcements. For a detailed description of announcements
please refer to the Appendix E.

See also:

Reference Manual 125

IDT Cameras SDK

3.5.8. XsReadBorderData (HG)

126

XS_ERROR XsReadBorderData (XS_HANDLE hCamera, void *pDataBuff,
XSULONG32 nSize)

Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
Parameters

hCamera

Specifies the handle to an open camera

pDataBuff

Specifies the bytes buffer which receives the border data
nSize

Specifies the size in bytes of the data buffer

Remarks

The routine reads the border data from the HG camera. For a detailed description of the
border data structure please refer to the HG Command Protocol reference.

See also:

Reference Manual

IDT Cameras SDK

3.5.9. XsAttach

XS_ERROR XsAttach (XS_HANDLE hCamera)
Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS _E NOT_SUPPORTED, if the operation is not supported.
XS_HARDWARE_FAULT, if any hardware error occurs.
Parameters

hCamera

Specifies the handle to an open camera

Remarks

The routine handles the simultaneous connection to the camera from different computers.
The routine is supported by HG and Y cameras only.

See also:

Reference Manual 127

IDT Cameras SDK

3.5.10. XsConfigureWriteToDisk

XS_ERROR XsConfigureWriteToDisk (XS_HANDLE hCamera, XSULONG32
nEnable, PXS_W2DCFG pCfg, XS_StreamingCallback pfnCallback, void*
pUserData)

Return values

XS_SUCCESS if successful, otherwise
XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E _NOT_SUPPORTED, if the option is not supported.
Parameters

hCamera

Specifies the handle to an open camera.

nEnable

Specifies whether the option is enabled or disabled.

pCfg

Specifies a pointer to the configuration structure.
pfnCallback

Specifies a pointer to a callback.

pUserData

Specifies a pointer to user data returned by the callback.
Remarks

The routine activates and deactivates direct write to disk with M, Pcie and XS-Mini
cameras.

See also:

128 Reference Manual

IDT Cameras SDK

3.5.11. XsReadToVideo

XS_ERROR XsReadToVideo (XS_HANDLE hCamera, XSULONG32
nStartAddLo, XSULONG32 nStartAddHi, XSULONG32 nFrameldx)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS_E _NOT_SUPPORTED, if the routine is not supported.

XS_E_BUSY, if the camera is busy and the command cannot be performed.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters

hCamera

Specifies the handle to an open camera

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address
nFrameldxOrSize

Specifies the index or the size of the frame to read

Remarks

This function reads a single frame from the camera memory to the HDMI output. The user
must specify the starting address and the index of the frame. If the index is set to
OxFFFFFF the camera snaps and image to the HDMI output (Live). The routine is active
only on “new design” Y cameras.

See also:

Reference Manual 129

IDT Cameras SDK

3.5.12. XsLoadLookupTable

130

XS_ERROR XsLoadLookupTable (XS_HANDLE hCamera, unsigned short
*pnTable, XSULONG32 nSize)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.

XS _E_INVALID _ARGUMENTS, if the routine arguments are not valid.

Parameters

hCamera

Specifies the handle to an open camera
pnTable

Specifies the pointer to the lookup table array
nSize

Specifies the size of the array

Remarks

This function loads a user-defined lookup table. The XSP_LUT parameter should be set
to XS_LUT_USERR first. The table is an array of unsigned short elements that converts
the original sensor pixel depth (8, 10 or 12 bit) into the currently configured pixel depth.

See also: XsSetParameter, XSP_LUT

Reference Manual

IDT Cameras SDK

3.5.13. XsVideoPlayback

XS_ERROR XsVideoPlayback (XS_HANDLE hCamera, XSULONG32 nOption,
XSULONG32 nStartAddLo, XSULONG32 nStartAddHi, XSULONG32 nFrames,
XSULONG32 nStartFrameldx, XSULONG32 nStopFrameldx)

Return values

XS_SUCCESS if successful, otherwise

XS_E_INVALID_HANDLE, if the camera handle is not valid.
XS_E_INVALID_ARGUMENTS, if the arguments are not valid.
XS_E_NOT_SUPPORTED, if the routine is not supported.
XS_E_HARDWARE_FAULT, if any error occurs while calling the driver.

Parameters
hCamera

Specifies the handle to an open camera

nQOption

Specifies the playback mode (0: off, 1: forward, 2: rewind). See XS_VIDEO_PB.
nStartAddLo

Specifies the low-order 32 bit value of the memory starting address
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address

nFrames

Specifies the total number of frames to playback

nStartFrameldx

Specifies the index of the first frame of the sequence (range 0 to nFrames -1)
nStopFrameldx

Specifies the index of the latest frame of the sequence (range 0 to nFrames -1)

Remarks

This routine activates or deactivates an asynchronous playback of images on the video
(HDMI) output. The parameters to be specified are: the mode (off, forward or rewind), the
starting address, the number of frames, the indexes of the first and the latest frame in the
memory segment. If the sequence has been acquired in circular mode the value of the
start index may be larger than the value of the stop index. The routine is active if the
value returned by the XsGetCameralnfo routine with the XSI_ASYNC_VIDEO_PB
parameter is 1. The status of the playback may be checked with a call to the
XsGetCameraStatus routine. If the playback is active the routine returns the
XSST_VPB_ON_CON or XSST_VPB_ON_COFF values in the status field and the index
of the current frame in the pninfo1 field.

See also:

Reference Manual 131

IDT Cameras SDK

4. LabVIEW™ |nterface Reference

4.1. Overview

132

The LabVIEW™ Interface allows acquiring images and controlling the cameras from
inside National Instruments LabVIEW application. It works with LabVIEW 2011 and
greater, on Windows Vista, 7, 8 and 10. MAC OSX is not supported.

The LabVIEW™ Interface includes the Vis (Virtual Instruments) for controlling the
camera and some sample VIs showing how to use the interface: the camera Vis are
packaged in a library called XS.LLB) located in the MotionProX directory in the user.lib
subdirectory of the LabVIEW folder. The examples are located in the LabVIEW
subdirectory of the installation folder “C:\Program Files (x86)\IDT\CameraSDK xx.yy.zz".

The VIs may be accessed by selecting the “Show Functions Palette” menu item from the

Window” menu, then by clicking the “User Libraries” button and the “IDT Camera VIs”
button.

The LabVIEW interface is supported on both 32 and 64 bit platforms of the SDK.

i l (&, Search I £}, Customize™ I = |

A 1B @O fad

Enum Camer.. Open Camer.. Close Camer.. GetInfowi Open Raw C..

— — ,
; BROC
g 2)
Get Paramet... Set Paramete.. Send Configowi Synch Grabwi Get Broc Par...

start stop ready read p-view
Y Y @ Y

Mernory Star.. Memory Sto.. Memory Gra.. Memory Rea.. Memory Pre..,

s R Y2 N 7 B N B 0%

Mermory Rea.. Trigger.vi Reset.vi Read GP5 Ti... Memory Eras...

!

Enable Diag .. GetErrorwvi Image To Pic..

B,

Reference Manual

IDT Cameras SDK

4.2. Initialization Vs

4.2.1. Overview: Initialization Vls

Initialization Virtual Instruments allow the user to initialize the cameras, enumerate the
available cameras, open and close them.

Enum Cameras enumerates the cameras currently connected to the computer.
Open Camera opens a camera.
Open Raw Camera opens a raw file like a virtual camera.

Close Camera closes a camera, previously open.

Reference Manual 133

IDT Cameras SDK

4.2.2. Enum Cameras

IDs
Enurm Filter —4p:£ Mrof Cameras
Error oot

Errar In

Inputs

Error

Specifies a standard error cluster input terminal

Enum Filter

Specifies the enumeration filter to detect differnet camera models

Outputs

Error

Specifies the return error code of the function (0 if it's is successful, non 0 otherwise)

IDs

Specifies the array containing the IDs of the enumerated cameras

Nr of Cameras

Specifies the number of enumerated cameras

Remarks

The VI enumerates the active cameras and returns a list of the enumerated cameras IDs.
This VI must be set before “Open Camera” to find the available cameras. The “Enum
Filter” input specifies which camera model is going to be enumerated. The “Nr of
cameras” output contains the number of cameras. If any error occurs during the

enumeration, the Error Out terminal signals the error condition.

See also: “Open Camera”

134 Reference Manual

IDT Cameras SDK

4.2.3. Open Camera

Cam D In —4--r— Cam D Out
Error In —l__Je— Error out

Inputs

Camera ID

Specifies the ID of the camera to be open, or 0 for the first available camera

Error

Specifies a standard error cluster input terminal

Outputs

Error

Specifies the return error condition

Camera ID

Specifies the ID of the opened camera

Remarks

The VI opens the camera with a specific ID. The value may be retrieved by calling the
“Enum Cameras” VI. The user may supply a specific camera ID or 0O: in this case the
first available camera is open. If any error occurs during the open operation, the Error Out

terminal signals an error code. The VI returns the ID of the open camera.

See also: “Close Camera”

Reference Manual 135

IDT Cameras SDK

4.2.4. Open Raw Camera

136

RAW path In —e by +9— RAW 1D Out
RAWSs— Errar oot

Inputs

Raw File In

Specifies the full path of the rawfile.xml or the directory where the file is stored.

Outputs

Error

Specifies the return error condition

Camera ID

Specifies the ID of the virtual camera

Remarks

The VI opens the raw file like a virtual camera. VI. The user may supply the full path of
the rawfile.xml file or the path to the directory where the file and the sequence are stored.
If any error occurs during the open operation, the Error Out terminal signals an error

code. The VI returns the ID of the open virtual camera.

See also: “Close Camera”

Reference Manual

IDT Cameras SDK

4.2.5. Close Camera

Cam 1D In —*|qse
Errar In = “3M s Frrar Out

Inputs

Camera ID

Specifies the ID of the camera to be closed (it may be a camera or a raw file)
Error

Specifies a standard error cluster input terminal

Outputs

Error

Specifies the return error condition

Remarks

This VI closes a camera or a raw file previously open. If any error occurs during the
operation, the Error Out terminal signals an error code.

See also: “Open Camera”, “Open Raw Camera”

Reference Manual 137

IDT Cameras SDK

4.3. Configuration Vis

4.3.1. Overview: Configuration Vis
Configuration Virtual Instruments allow the user to read information from the camera, read
configuration parameters from the camera and write configuration parameters to the
camera.

Get Info reads information from the camera, such as camera model, firmware version,
etc.

Get Parameter reads a single specific parameter from the camera configuration and
reads the minimum and maximum values.

Set Parameter writes a single specific parameter to the configuration.

Send Config flushes the updated configuration to the camera.

138 Reference Manual

IDT Cameras SDK

4.3.2. Get Info

Cam D In ¢ U Carm 1D ot
Info keyin —4@»— YWalue Ot
Errarin It g - Error Cut

Inputs

Camera ID

Specifies a valid camera ID

Info Key

Specifies which parameter has to be returned by the VI

Error

Specifies a standard error cluster input terminal

Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Value

Specifies the value of the info parameter

Remarks

This VI returns camera specific information, such as sensor type or version numbers,
generally state-independent information. See the Appendix B for a list of all the available

Info Key values. If any error occurs during the operation, the Error Out terminal signals an
error code.

TS

See also: “Get Parameter”, “Set Parameter”

Reference Manual 139

IDT Cameras SDK

4.3.3. Get Parameter

ir Chat
Cam D In — gty — Cam ID ut
Param Key In & Walue Out
Errar In) L g . Errar Qut

iz Ot

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Param Key

Specifies the index of the parameter
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Value

Specifies the current value of the parameter
Min
Specifies the minimum value of the parameter

Max

Specifies the maximum value of the parameter

Remarks

This VI reads a specific configuration parameter from the camera and returns its value,
the minimum and the maximum. The parameter key is one of the input parameters. A list
of the parameters constants is available in Appendix C. If any error occurs during the
operation, the Error Out terminal signals an error code.

See also: “Set Parameter”

140 Reference Manual

IDT Cameras SDK

4.3.4. Set Parameter

Cam D In
Faram key In -3
Param Yalue In — 3
Errar In

_)"b— Carm 1D Out
et Error Out

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Param Key

Specifies the index of the parameter

Value

Specifies the value of the parameter

Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Remarks

This VI writes a specific configuration parameter to the configuration set. The parameter
key is one of the input parameters. A list of the parameters is available in Appendix C. If
any error occurs during the operation, the Error Out terminal signals an error code. The
user may call the “Set Parameter” VI several times to set different parameters, and then

call the “Send Config” VI to download the configuration to the camera.

See also: “Get Parameter”, “Send Config”

Reference Manual 141

IDT Cameras SDK

4.3

142

.5. Send Config

Cam D In —4- — CamlD out
-..

Errar In — e— Error Cut

Inputs

Device ID
Specifies a valid camera ID
Error

Specifies a standard error cluster input terminal
Outputs

Camera ID
Specifies the camera ID
Error

Specifies the return error condition

Remarks

This VI sends the current configuration to the camera and activates it. The user may call
the “Set Parameter” VI several times to set different parameters, and then call the “Send
Config” VI to download the configuration to the camera. If any error occurs during the

operation, the Error Out terminal signals an error code.

See also: “Get Parameter”, “Set Parameter”

Reference Manual

IDT Cameras SDK

4.4. Camera Memory Acquisition Vs

4.41. Overview
The camera memory acquisition Virtual Instruments allow the user to acquire images in
the camera memory: snap synchronously, start and stop acquisitions, read images during
recording, check the status of an acquisition and trigger the camera.

Synch Grab synchronously snaps an image (or two in double exposure mode) and
outputs it as an image object.

Memory Start Grab starts an acquisition in the camera memory.
Memory Stop Grab stops the current acquisition in the camera memory.
Memory Preview previews images during the acquisition.

Memory Grab Ready returns the status of the current acquisition.
Memory Read Data reads images from the camera memory.

Memory Erase erases the camera memory.

Memory Read Trigger Position reads the position (index) of the frame that received the
trigger.

Memory Read BROC Data reads the parameters of a BROC segment.

Trigger issues a software trigger to the camera.

Reference Manual 143

IDT Cameras SDK

4.4.2. Synch Grab

Tirme Cut In —] Cam 1D Ot

Cam 1D In T 1._'_ “TIEIQE 1 Cut

Image 1 In I3 =3
Image 2 In ﬁ-@% Image 2 Out

Errar In Errar Cut

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Time Out

Specifies the grab time out in ms

Image 1

Specifies the first image input (requires IMAQ)
Image 2

Specifies the second image input (double exposure mode only, requires IMAQ)
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition
Image 1

Specifies the first image output
Image 2

Specifies the second image output (double exposure mode only)

Remarks

This VI snaps an image (or two) from the camera. The image is snapped synchronously
and the function exits when the frame has been recorded or a time out occurs. If the
camera mode is set to double exposure, two frames are acquired. The VI outputs two
image objects, but the second is valid only in double exposure mode. The image format
depends on the image size and pixel depth (8 bit or 16 bit mono, 32 bit RGBA color).

See also:

144 Reference Manual

IDT Cameras SDK

4.4.3. Memory Start Grab

Frames In

Cam 1D In e 1
Start Add Lo In ——$5tate— Cam D Out
Start Add Hi In —% (04— Errar out

ErrarIn Tt

Pre-trig Frames In

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Frames

Specifies the number of frames to acquire

Start Add Lo

Specifies the low-order 32 bit value of the memory starting address

Start Add Hi

Specifies the high-order 32 bit value of the memory starting address

Pre-trigger Frames

Specifies the number of frames to be acquired before the trigger (circular mode only)
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Remarks

This VI starts an acquisition in the camera memory and returns immediately. The user
may know when the frames have been captured by calling the “Memory Grab Ready” VI.
If any error occurs during the operation, the Error Out terminal signals an error code. The
memory start address can be 0.

See also: “Memory Stop Grab“

Reference Manual 145

IDT Cameras SDK

4.4.4. Memory Stop Grab

Cam 1D In —fztap d— Cam 1D Out
Errar In —a = Error Out

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition
Remarks

This VI stops any camera memory acquisition previously started. If any error occurs
during the operation, the Error Out terminal signals an error code.

See also: “Memory Start Grab®

146 Reference Manual

IDT Cameras SDK

4.4.5. Memory Grab Ready

Camn 1D In —grazaypd 1§ Ready Out
| @P— Carm 1D Out

= Error Out

Errar In —

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Is Ready

Specifies whether the acquisition is finished (1) or not (0).
Remarks

This VI returns the status of the current acquisition. If the “Is Ready” value is 1 the images
have been recorded and saved to camera memory, otherwise not.

See also: “Memory Start Grab®, “Memory Stop Grab“

Reference Manual 147

IDT Cameras SDK

4.4.6. Memory Preview

Cam 1D In Cam ID Out
Image |n_‘:F""E“f:._|-Image ot
Errar | —re @:'_'-Frm ldx Qut
Errar Cut
Inputs
Camera ID

Specifies a valid camera ID

Image

Specifies the image input

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Image

Specifies the image input

Frame Index

Specifies the index of the previewed frame
Error

Specifies the return error condition
Remarks

This VI may be used only during a recording. It returns the latest acquired image and the
index from the beginning of the sequence.

See also: “Memory Start Grab“

148 Reference Manual

IDT Cameras SDK

4.4.7. Memory Read Data

Frame Index In
Matused In
Cam D n i 1 y— Carn 1D Out
Image In ——g =20
Start Add Lo In —% (2

Start Add Hi In "L Errar Qut
ErrarIn

=—ltmage Out

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Frame Index

Specifies the index of the frame (0 to N-1)

not Used

This parameter is not used and ignored. Set its value to 0.

Start Add Lo

Specifies the low-order 32 bit value of the memory starting address
Start Add Hi

Specifies the high-order 32 bit value of the memory starting address

Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition
Image

Specifies the image output

Remarks

This VI reads data from the camera memory and converts it into an image object. The
user has to specify the starting address (usually 0) and the frame index. The driver uses
the current camera settings to compute the frame size and converts the image into the
current format (mono 8, 10, 12 bit, or color 32 bit RGBA). The image format depends on
the image size and pixel depth.

See also: “Memory Start Grab®, “Memory Stop Grab“

Reference Manual 149

IDT Cameras SDK

4.4.8. Memory Read Trigger Position

Trig Pos Out
Cam D In —4-rd-tr;:£ Cam D Out

Error In —¢ @:T Trig Time Ot

Error out

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Trig Pos

Specifies the index of the triggered frame in the acquired sequence
Trig Time

Specifies the time distance before the leading edge of frame zero and the trigger pulse (in
microseconds)

Remarks

This VI may be used only if the “record mode” parameter has been set to 1 (circular) and
an acquisition of images has been performed. The returned values are valid until a new
acquisition is called. For further information about trigger position, please refer to the
“Triggering” topic in the “Using the SDK” section.

See also: “Memory Start Grab®, “Memory Stop Grab“

150 Reference Manual

IDT Cameras SDK

4.4.9. Memory Erase

CamlIDIn & Cam D Qut
Errar In Errar Qut

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition
Remarks

This VI erases the memory on HG cameras

See also:

Reference Manual 151

IDT Cameras SDK

4.4.10. Get BROC parameters
Start Add Hi Out
Cam D In P m—?ﬁ&g gﬂi
g L
Segmergr'rgf :: | ®FOC % Trig Tirme Qut

Errar Cut
Start &dd Lo Out

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Segment

Specifies the index of the BROC segment
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Start Add Lo and HI

Returns the low order and the high order words of the BROC segment start address

First Index

Returns the index of the first image in the BROC segment

Trigger Time
Returns the trigger time in the BROC segment

Remarks

This VI is supported on cameras that support hardware BROC. It reads the information of
a BROC segment.

See also:

152 Reference Manual

4.411. Trigger
Cam D In e Cam 1D Cut
Error In s Error Qut
Inputs
Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal

Outputs
Camera ID
Specifies the camera ID

Error

Specifies the return error condition

Remarks

IDT Cameras SDK

This VI issues a software trigger to the camera. The camera must be recording and the
record mode set to 1 (circular).

See also:

Reference Manual

153

IDT Cameras SDK

4.5. Miscellaneous Vls

4.5.1. Overview: Miscellaneous Vis

Miscellaneous Virtual Instruments allow the user to convert image formats and manage
the error conditions in the Vls.

Reset sends a reset command to the camera.

Read GPS Timing reads the IRIG/GPS/PTP time stamp and returns it as a string.
Enable Diag Trace enables and disables the diagnostic trace.

Image To Picture converts an IMAQ image to a LabVIEW picture.

Get Error manages the error conditions in the other Vls (this VI is for internal use only).

154 Reference Manual

IDT Cameras SDK

4.5.2. Reset

Cam D In O Cam D Qut
Errar In Errar Cut

Inputs

Camera ID

Specifies a valid camera ID

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition

Remarks

This VI sends a reset command to the camera

See also:

Reference Manual 155

IDT Cameras SDK

4.5

156

.3. Read GPS Timing

CamiDIn — ¢ 31— Cam 1D Out
Size In _4.®.._ Data Out
Error In =T =1 gpqr out

Inputs

Camera ID

Specifies a valid camera ID

Size

Specifies the size of the IRIG buffer

Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Data

Specifies the IRIG/GPS/PTP time stamp output
Error

Specifies the return error condition

Remarks

This VI reads IRIG/GPS/PTP time stamp from the camera and returns it as a string. The

size of the data buffer in bytes is specified in the Size input.

See also:

Reference Manual

IDT Cameras SDK

4.5.4. Enable Diag Trace

Trace File In
Cam D In —& —+— Cam D Out
Enable In —IN= L ror ot
Errar In -F
Inputs
Camera ID

Specifies a valid camera ID

Trace File

Specifies the path to the trace text file
Enable

Specifies if the trace is enabled or disabled
Error

Specifies a standard error cluster input terminal
Outputs

Camera ID

Specifies the camera ID

Error

Specifies the return error condition
Remarks

This VI enables or disables the diagnostic trace in the camera driver. The trace messages
are stored in a text file specified in the “Trace File” input.

See also:

Reference Manual 157

IDT Cameras SDK

4.5.5. Image To Picture

Irnade In—y,

; i — Ficture Cut
Top-left Point In —q-.ﬂl
H _r.. &— Error Qut
Error In

Inputs

Error

Specifies a standard error cluster input terminal
Top-Left point

Specifies the coordinates of the top-left point
Image

Specifies the image to convert

Outputs

Error

Specifies the return error condition

Picture

Specifies the output LabVIEW picture object
Remarks

This VI converts an IMAQ image object into a LabVIEW picture object. If any error occurs,
the Error Out terminal signals this error.

See also:

158 Reference Manual

IDT Cameras SDK

4.5.6. Get Error

Error Code In—.g
Calling ¥I's Path —u&n— Errar Out
Error In It

Inputs

Error Code

Specifies the camera error code

Calling VI's Path

Specifies the path of the VI which generates the error
Error

Specifies a standard error cluster input terminal
Outputs

Error

Specifies the return error condition

Remarks

This VI manages the error conditions in the other Vls (this VI is for internal use only).

See also:

Reference Manual 159

IDT Cameras SDK

4.6. How to use the Vs

4.6.1. Opening and closing a camera

Before calling any other VI, the camera must be open. To open a specific camera, the
user supplies to the Open VI the unique ID of that camera or the value 0 to open the first
available camera. To obtain the list of all available cameras you may call the “Enum
Cameras” VI.

4.6.2. Configuring a camera

Before configuring a camera, several calls to the “Set Parameter” VI may be done. When
the parameters have been set, a call to the “Send Config” VI downloads the new
configuration and activates it. If you want to read a parameter value you may call the “Get
Parameter” VI.

4.6.3. Acquiring images in real time

The camera frame stream may be acquired continuously. After opening the camera, the
“Synch Grab” VI may be called.

4.6.4. Acquiring images in camera memory

To acquire a set of images in camera memory, the “Memory Start Grab” VI may be called.
The VI starts an acquisition in the camera memory and returns immediately. To know
when the acquisition is over, the user may call the “Memory Grab Ready” VI. The current
acquisition may be stopped by the “Memory Stop Grab” VI. After the acquisition, the
images may be read by the “Memory Read Data” VI.

4.6.5. Error handling

160

The LabVIEW interface uses the standard error cluster found in many LabVIEW Vis. The
error cluster includes status, code and source parameters. When an error occurs, status
is set to TRUE, source is set to the VI that caused the error, and code is set to one of the
values in the table below.

Code | Description

0 Success, no error

Driver fault

Camera not found. The camera ID is incorrect or there are no cameras connected.

Bad image Format. Monochrome cameras support only 8 or 16 bit format.

Invalid value. You tried to set a parameter value that is out of range.

The configuration cannot be loaded from the camera.

The camera cannot be closed.

Unable to read a parameter from the camera configuration.

O IN|OO |0 WIN|~

Unable to write a parameter to the camera configuration.

Reference Manual

IDT Cameras SDK

9 Unable to read info from the camera.

10 The configuration cannot be flushed to the camera.

11 Unable to allocate memory.

12 Unable to snap an image or to start memory acquisition.

13 Unable to read image data from the camera memory.

14 Unable to read the trigger position from the camera.

15 Unable to stop memory acquisition.

16 Bad image format. Only BGRA 32 bit images are supported.

17 Unabile to calibrate background.

18 Bad image format. This monochrome camera supports only 8 bit image format.

19 Unable to trigger the camera. The software trigger is not supported or the camera is
not recording.

20 Unable to read IRIG?GPS/PTP time stamp from the camera. Make sure that the 'IRIG
parameter is set to 1 and the camera is properly connected.

21 Unable to reset the camera.

22 Unable to enable/disable the diagnostic trace.

23 Unable to erase the camera memory.

24 Unable to open the raw file.

25 Unable to download an image to the raw file.

100 Generic error.

Reference Manual 161

IDT Cameras SDK

4.7. Sample Vs

4.71. 1_enum_cameras

This sample shows how to display the result of a cameras enumeration. The output of the
“‘Enum Cameras” VI is displayed in a group of four LED and four edit boxes. If a camera is
enumerated the corresponding LED is turned on and the camera ID is displayed in the
edit box.

4.7.2. 2_get_camera_info

This sample shows how to retrieve information from the camera such as camera model,
firmware version, etc. The first available camera is open and the following information is
retrieved and displayed: camera model, sensor model, firmware version.

4.7.3. 3_image_live

This sample shows how to continuously capture and display images from the camera.
The example opens the first available camera, configures it with the default parameters,
and acquires a single image. The acquisition output is displayed in a preview window, and
then the camera is closed.

4.7.4. 4_image_live_error_check

This sample shows how to continuously capture and display images and how to handle
an error condition. The sample opens the first available camera, configures it with the
default parameters, and acquires a single image. The acquisition output is displayed in a
preview window, and then the camera is closed.

4.7.5. 5_image_live_with_parameters

This sample shows how to capture images and interactively configure the camera. The
sample opens the first available camera and allows the user to configure the following
parameters: exposure time, frame period, sensor gain and ROIl. Then the camera is
configured and a single image is acquired. The acquisition output is displayed in a
preview window.

4.7.6. 6_image_acquire

This example shows how to record a set of images in the camera memory using the
“Memory Start Grab” VI and how to read and playback those images using the “Memory
Read Data”. The user may select the configuration parameters and the number of frames
to record, and then press the “Acquire” button. The current acquisition may be aborted. If
the sequence has been successfully acquired a green LED is turned on. Then the user
may playback the acquired sequence.

4.7.7. T_misc

162 Reference Manual

IDT Cameras SDK

This example shows some of the advanced features of the interface. The VI enables the
diagnostic trace, resets the camera, reads the IRIG/GPS/PTP time stamp and then

disables the trace.

4.7.8. 8_open_raw_file

This example shows how to open a raw file like a virtual camera and playback the images
using the “Memory Read Data” VI.

Reference Manual 163

IDT Cameras SDK

5.

MATLAB™ |nterface Reference

5.1. Overview

164

MATLAB™ Interface allows to acquire images and to control the cameras from inside
Mathworks™ MATLAB application. The interface works with MATLAB 6.5 and greater, on
Windows XP, Vista, 7, 8 and 10.

The interface includes a 64 bit ‘MEX file, packaged in a library called
XStreamML.mexw64 and some example .m files to show how to use the interface.

Every routine may be called from a MATLAB™ script file in the form:

[output1, output2 ...] = XStreamML [input1, input2 ...]
The number of inputs and outputs depends on the function selected. In any function call
input1 is the name of the requested command (for ex. ‘EnumCameras’) and output1 is the

result of the operation (0 = SUCCESS, otherwise ERROR).

The idtdef.m file contains a class that includes the definitions of all the parameters of the
SDK (like in XstrmAPL.h file).

More details on the commands syntax may be retrieved by typing “help XStreamML” at
MATLAB command prompt or opening the file XStreamML.m with a text editor.

The MATLAB interface reflects the SDK API with a few exceptions. The MATLAB interface
and examples are listed below.

Reference Manual

IDT Cameras SDK

5.2. Initialization Functions

5.2.1. Overview: Initialization functions
Initialization functions allow the user to initialize the environment and the cameras.
Version retrieves the driver version.

SetNetAdapterlPAddress selects the IP address of the network adapter connected
to the GE cameras.

InitPCleMemory initializes the computer memory buffer for Xstream PCle cameras.
EnumCameras enumerates the IDs of the cameras connected to the computer.
OpenCamera opens a camera.

OpenRawcamera opens a raw sequence like a virtual camera.

CloseCamera closes a camera previously open.

Reference Manual 165

IDT Cameras SDK

5.2.2. Version

[strVersion] = XStreamML (‘Version’)

Inputs

None

Outputs

strVersion

Specifies the driver version string (for example, ‘2.13.01°)
Remarks

This function returns the MATLAB interface version string.

See also:

166 Reference Manual

IDT Cameras SDK

5.2.3. SetNetAdapterIPAddress

[nResulf] = XStreamML (‘SetNetAdapterlPAddress’, strAddress)

Inputs

nMB

Specifies the IP address of the network adapter (for ex. '10.10.10.2")

Outputs

nResult

Specifies the return error code (0 if the function is successful, otherwise error)

Remarks

The routine selects the IP address of the network adapter connected to the GigaEthernet
cameras. This routine should be called before the EnumCameras routine. If the address
is not specified the enumerator will search for cameras from every network adapter

installed in the local computer and the enumeration process will be slower.

See also: EnumCameras

Reference Manual 167

IDT Cameras SDK

5.2.4. EnumCameras

168

[nResult, nltems, svArray] = XStreamML (‘EnumCameras’, nEnumfFilter)
Inputs

nEnumfFilter

Specifies the enumeration filter

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nltems

Specifies the number of detected cameras

SVArray

Specifies the array containing the IDs of the detected cameras

Remarks

The routine enumerates the active cameras and return an array filled with the detected
cameras IDs. This routine must be called before OpenCamera to find out which cameras
are available. The nltems variable contains the number of detected cameras. The
nEnumpFilter variable specifies which camera model is going to be enumerated. If any
error occurs during the cameras enumeration, the nResult variable contains an error

code.

See also: OpenCamera

Reference Manual

IDT Cameras SDK

5.2.5. InitPCleMemory

[nResulf] = XStreamML (‘InitPCleMemory’, nMB)

Inputs

nMB

Specifies the size in MB of the memory buffer

Outputs

nResult

Specifies the return error code (0 if the function is successful, otherwise error)
Remarks

The routine allocates the computer buffer for the Xstream PCle camera. This routine
should be called before OpenCamera.

See also:

Reference Manual 169

IDT Cameras SDK

5.2.6. OpenCamera

[nResult, nCamerald] = XStreamML (‘OpenCamera’, ninputld)

Inputs

ninputld

Specifies the ID of the camera to be opened, or 0 for the first available camera
Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nCamerald

Specifies the ID of the opened camera

Remarks

The routine opens the camera whose ID is in the variable ninputld. The value can be
retrieved calling the EnumCameras enumeration function. The user may supply a
specific camera ID or 0: in this case the first available camera is opened. If any error
occurs during the camera opening, the routine returns an error code in the nResult

variable, otherwise it returns 0. The function also returns the camera Id.

See also: CloseCamera

170 Reference Manual

IDT Cameras SDK

5.2.7. OpenRawCamera

[nResult, nCamerald] = XStreamML (‘OpenRawCamera’, I[pszRawFilePath)
Inputs

IpszRawFilePath

Specifies the full path to the raw file.

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nCamerald

Specifies the virtual camera unique id (used in other routine calls)

Remarks

The routine opens the RAW file with path [pszRawFilePath. The variable may contain be
the full path to the rawfile.xml file or the full path to the directory that includes the file and

the raw sequence.

See also: CloseCamera

Reference Manual 171

IDT Cameras SDK

5.2.8. CloseCamera

[nResulf] = XStreamML (‘CloseCamera’, nCamerald)
Inputs

nCamerald

Specifies the ID of the camera to be closed

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

This function closes a camera previously open. If any error occurs during the operation,
the routine returns an error code in the nResult variable, otherwise it returns 0.

See also: OpenCamera

172 Reference Manual

IDT Cameras SDK

5.3. Configuration functions

5.3.1. Overview: Configuration functions
Configuration functions allow the user to read information from the camera, read
configuration parameters from the camera and write configuration parameters to the
camera.

GetCameralnfo reads information from the camera, such as camera model, firmware
version, etc.

GetParameter reads a specific parameter from the current settings configuration.
SetParameter writes a specific parameter to the current settings configuration.

SendCfg downloads the current configuration to the camera and activates the new
settings.

Reference Manual 173

IDT Cameras SDK

5.3.2. GetCameralnfo

174

[nResult, ninfoValue] = XStreamML (‘GetCameralnfo’, nCamerald, ninfoKey)
Inputs

nCamerald

Specifies a valid camera ID

ninfoKey

Specifies which parameter the function has to return

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

ninfoValue

Specifies the index of the info

Remarks

This function returns camera specific information, such as sensor type or version
numbers, generally state-independent information. See the Appendix B for a list of all the

available ninfoKey values.

See also: GetParameter

Reference Manual

IDT Cameras SDK

5.3.3. GetParameter

[nResult, nValue, nMinValue, nMaxValue] = XStreamML (‘GetParameter’,
nCamerald, nParamKey)

Inputs

nCamerald

Specifies a valid camera ID
nParamKey

Specifies the index of the parameter
Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nValue

Specifies the current value of the parameter

nMinValue

Specifies the minimum value of the parameter

nMaxValue

Specifies the maximum value of the parameter

Remarks

This function reads a specific configuration parameter from the camera and returns the
parameter value, the minimum and the maximum. The parameter key is one of the input
parameters. A list of the parameters constants is available in Appendix C. If any error
occurs during the operation, the routine returns an error code in the nResult variable,

otherwise it returns 0.

See also: SetParameter

Reference Manual 175

IDT Cameras SDK

5.3.4. SetParameter

[nResulf] = XStreamML (‘SetParameter’, nCamerald, nParamKey, nValue)
Inputs

nCamerald

Specifies a valid camera ID

nParamKey

Specifies the index of the parameter

nValue

Specifies the value of the parameter

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

This function writes a specific configuration parameter to the camera. The parameter key
is one of the input parameters. A list of the parameters indexes is available in Appendix C.
If any error occurs during the operation, the routine returns an error code in the nResult
variable, otherwise it returns 0. Note that the new value will be active only after the
SendCfg function has been called.

See also: SendCfg, GetParameter

176 Reference Manual

IDT Cameras SDK

5.3.5. SendCfg

[nResulf] = XStreamML (‘SendCfg’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks
This function downloads the current configuration to the camera and activates new
settings. If any error occurs during the operation, the routine returns an error code in the

nResult variable, otherwise it returns 0.

See also: GetParameter

Reference Manual 177

IDT Cameras SDK

5.4. Camera Memory Acquisition Functions

5.4.1. Overview: Camera Memory Acquisition Functions

178

The camera memory acquisition functions allow the user to acquire images in the camera
memory: start and stop acquisitions, read images from the camera memory and check the
status of an acquisition.

SynchGrab grabs synchronously one or two images from the camera.

MemoryStartGrab starts an acquisition in the camera memory

MemoryStopGrab stops the current acquisition in the camera memory.

MemoryPreview reads the latest acquired frame during an acquisition and/or reads the
number of frames acquired so far.

MemoryReadData reads image data from the camera memory.
MemoryDownloadRawFrame downloads an image into a RAW file.
MemoryReadTriggerPosition reads the trigger position in the camera memory.
MemoryErase erases the camera memory (HG cameras only).
GetBrocParameters reads the parameters of a BROC segment.

GrablsReady checks the status of the current acquisition.

Trigger issues a software trigger to the camera.

Reference Manual

IDT Cameras SDK

5.4.2. SynchGrab

[nResult,image1,image2] = XStreamML (‘SynchGrab’, nCamerald, nTimeOut)
Inputs

nCamerald

Specifies a valid camera ID

nTimeOut

Specifies the grab time out in ms

Outputs

nResult

Specifies the return error code (0 if the function is successful, otherwise not 0)

image1

Specifies the array where the image is stored.

Image2

Specifies the array where the second image is stored (double exposure mode only)
Remarks

It grabs an image (or two) from the camera. The image grab is synchronous and the
function exits when the frame has been grabbed or a time out occurs. If the camera mode
is set to double exposure, two frames are acquired and the function outputs two image
buffers (arrays), otherwise only the first is valid. The array dimension depends on the
image size and pixel depth: if the pixel depth is 8 or 24, the array is an ‘unsigned char’

array; if the pixel depth is 10/12/30 or 36, the array is an ‘unsigned short’ array.

See also:

Reference Manual 179

IDT Cameras SDK

5.4.3. MemoryStartGrab

180

[nResult] = XStreamML (‘MemoryStartGrab’, nCamerald, nStartAddLo,
nStartAddHi, nFrames, nPreTrigFrames)

Inputs

nCamerald

Specifies a valid camera ID

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address
nFrames

Specifies the number of frames which have to be acquired
nPreTrigFrames

Specifies the number of frames to be acquired before the trigger; it's valid only if the
record mode is circular.

Outputs
nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

This function starts an acquisition in the camera memory and returns immediately. The
user may know when the frames have been captured by calling the GrablsReady
function. If any error occurs during the operation, the routine returns an error code in the
nResult variable, otherwise it returns 0.

See also: MemoryStopGrab

Reference Manual

IDT Cameras SDK

5.4.4. MemoryStopGrab

[nResulf] = XStreamML (‘MemoryStopGrab’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks
This function stops any camera memory acquisition previously started. If any error occurs
during the operation, the routine returns an error code in the nResult variable, otherwise it

returns 0.

See also: MemoryStartGrab

Reference Manual 181

IDT Cameras SDK

5.4.5. MemoryPreview

[nResult, image, nFramelndex] = XStreamML (‘MemoryPreview’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the returned error code (0 if the function is successful, otherwise not 0)

image

Specifies the array where the image is stored.

nFramelndex

Specifies the index of latest acquired frame

Remarks

This routine may be called during an acquisition in camera memory. It reads the latest
acquired frame and the number of frames acquired so far. The routine may be called to
preview an acquisition.

See also: MemoryStartGrab

182 Reference Manual

IDT Cameras SDK

5.4.6. MemoryReadData

[nResult, image] = XStreamML (‘MemoryReadData’, nCamerald, nisFirst,
nStartAddLo, nStartAddHi, nFrameldx)

Inputs

nCamerald

Specifies a valid camera ID

notUsed

This parameter is not used and ignored. Set its value to 0.

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address

nStartAddHi

Specifies the high-order 32 bit value of the memory starting address

nFrameldx

Specifies the index of the frame which have to be read
Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

image

Specifies the array where the image is stored

Remarks

This function reads data from the camera memory into the specified buffer. The user must
specify the starting address and the frame index. The driver uses the current camera
settings to compute the frame size and convert each 10 bit image into the current format
(8 or 10 bit). The user must be sure that the current settings of image format, pixel depth
and pixel gain are the same used in the acquisition. For further information, please refer
to the “Multiple Acquisitions” and “Camera Memory Management” topics in the “Using the
SDK” section. The array dimension depends on the image size and pixel depth: if the
pixel depth is 8, the array is an ‘unsigned char’ array; if the pixel depth is 10, the array is
an ‘unsigned short’ array.

See also: MemoryStartGrab, MemoryStopGrab

Reference Manual 183

IDT Cameras SDK

5.4.7. MemoryDownloadRawFrame

[nResult, image] = XStreamML (‘MemoryDownloadRawFrame’, nCamerald,
IpszRawFilePath, nStartAddLo, nStartAddHi, nFrameldx, nPageldx, nTotFrames)

Inputs

nCamerald

Specifies a valid camera ID.

IpszRawFilePath

Specifies the full path of the RAW file.

nStartAddLo

Specifies the low-order 32 bit value of the memory starting address.
nStartAddHi

Specifies the high-order 32 bit value of the memory starting address.
nFrameldx

Specifies the index of the frame in camera memory.

nPageldx

Specifies the index of the frame in the sequence (0 to nTotFrames).

nTotFrames

Specifies the total number of downloaded frames.

Remarks

This function downloads a frame from the camera memory into the specified Raw file. The
full path of the Raw file may be specified without the extension because the driver will ad
a “raw” extension to it. The user must specify the starting address and the index of the
frame in camera memory. If a sequence of N frames has been acquired in circular mode,
the position of the trigger index (T) should be read and the frames indexes should be
ordered (see the example in chapter 2 “Using the SDK”). Also, the pages index (from 0 to
N-1) and the total number of frames (N) must be specified.

See also: MemoryStartGrab, MemoryStopGrab

184 Reference Manual

IDT Cameras SDK

5.4.8. MemoryReadTriggerPosition

[nResult, nFrameldx, nTriggerTime] = XStreamML
(‘MemoryReadTriggerPosition’, nCamerald)

Inputs

nCamerald

Specifies a valid camera ID
Outputs
nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nFrameldx
Specifies the index of the triggered frame in the acquired sequence
nTriggerTime

Specifies the time distance between the leading edge of frame zero and the trigger pulse
(in microseconds)

Remarks

This function is valid only if the record mode is set to circular and the routine
MemoryStartGrab has been called with the parameter nPreTrigFrames <> 0. The
returned values are valid until a new acquisition or snap API is called. For further
information about trigger position, please refer to the “Triggering” topic in the “Using the
SDK” section.

See also: MemoryStartGrab

Reference Manual 185

IDT Cameras SDK

5.4.9. MemoryErase

[nResulf] = XStreamML (‘MemoryErase’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

The routine is called to erase the memory of HG cameras. If the memory is not erased the
user cannot start a new acquisition.

See also:

186 Reference Manual

IDT Cameras SDK

5.4.10. GetBrocParameters

[nResult, nStartAddrLo, nStartAddrHi, n1stFrmldx, nTrgTime] =
XStreamML('GetBrocParameters', nCamerald, nSectldx)

Inputs

nCamerald

Specifies a valid camera ID

nSectldx

Specitifes the index of the selected BROC section
Outputs

nStartAddrLo, nStartAddrHi

Specify the least significant and the most significant parts of the BROC section start
address in camera memory

n1stFrmldx

Specifies the index of the first frame of the BROC section.

nTrgTime

Specifies the trigger time delay from the sync signal edge.

Remarks

This function returns the information of a BROC section. It returns the address, the
position of the first index and the trigger time in the section. The function is supported on

cameras that support hardware BROC.

See also:

Reference Manual 187

IDT Cameras SDK

5.4.11. GrablsReady

188

[nResult, nlsReady] = XStreamML(‘MemoryReadTriggerPosition’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

nlsReady
Specifies whether the acquisition is finished (1) or not (0).
Remarks

This function returns the status of the current acquisition. If the returned value nlsReady
is 1 the current acquisition has been completed, otherwise not.

See also: MemoryStartGrab

Reference Manual

IDT Cameras SDK

5.4.12. Trigger

[nResulf] = XStreamML (‘Trigger’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks
This function issues a software trigger to the camera. The software trigger is effective if
the record mode is set to circular. If any error occurs during the operation, the routine

returns an error code in the nResult variable, otherwise it returns 0.

See also:

Reference Manual 189

IDT Cameras SDK

5.5. Miscellaneous Functions

5.5.1. Overview: Miscellaneous Functions
Reset resets the camera
ReadGPSTiming reads the GPS/IRIG/PTP info from the current frame (string).

EnableDiagnosticTrace reads enables and disables the diagnostic trace in the driver.

190 Reference Manual

IDT Cameras SDK

5.5.2. Reset

[nResult] = XStreamML (‘Reset’, nCamerald)
Inputs

nCamerald

Specifies a valid camera ID

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks
This function resets the camera.

See also:

Reference Manual 191

IDT Cameras SDK

5.5.3. ReadGPSTiming

[nResult, pBits] = XStreamML (‘ReadGPSTiming, nCamerald, nSize)
Inputs

nCamerald

Specifies a valid camera ID

nSize

Specifies the size in bytes of the IRIG buffer

Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

This function reads GPS/IRIG/PTP data from the current frame and returns it in string
format in the pBits variable

See also:

192 Reference Manual

IDT Cameras SDK

5.5.4. EnableDiagnosticTrace

[nResult] = XStreamML (‘EnableDiagnosticTrace’, nCamerald,
pszTraceFilePath, nEnable)

Inputs

nCamerald

Specifies a valid camera ID
pszTraceFilePath

Specifies the path of the trace text file
nEnable

Specifies if the trace is enabled or disabled
Outputs

nResult

Specifies the return error code of the function (0 if the function is successful, otherwise
not 0)

Remarks

This function enables or disables the camera diagnostic trace in the driver. The diagnostic
messages are stored in a text file specified in the pszTraceFile path parameter.

See also:

Reference Manual 193

IDT Cameras SDK

5.6. How to program with the Interface functions

5.6.1. Opening and closing a camera

Before calling any other routine, the camera must be open. To open a specific camera,
the user supplies to the OpenCamera routine the unique ID of that camera or the value 0
to open the first available camera. To obtain the list of all available cameras, call the
EnumCameras function.

5.6.2. Configuring a camera

Before configuring a camera, several calls to the SetParameter function may be done.
When the parameters have been set, a call to the SendCfg function downloads the new
configuration and activates it. If you want to read a parameter value you may call the
GetParameter.

5.6.3. Previewing images in real time

The camera can continuously preview images. After opening the camera, the SynchGrab
routine may be called.

5.6.4. Acquiring images in camera memory

To acquire a set of images in camera memory, you may call the MemoryStartGrab
function. This routine starts an acquisition in the camera memory and then returns
immediately. To know when the acquisition has been performed, use the GrablsReady
function. You may stop the current acquisition by calling the MemoryStopGrab routine and
read the images recorded in camera memory by calling the MemoryReadData function.

5.6.5. Error handling

194

The MATLAB interface returns the same error codes displayed in the Error Handling
section of the LabVIEW interface reference chapter.

Reference Manual

IDT Cameras SDK

5.7. Examples

5.7.1. CamEnum

This example shows how to read the list of all available cameras.

5.7.2. CamGetiInfo

This example shows how to open a camera and read information.

5.7.3. CamReadParam

This example shows how to open a camera and read parameters from the current
configuration.

5.7.4. CamlmageSnap

This example shows how to synchronously capture and display a single image.

5.7.5. CamRecAndSave

This example shows how to capture images into the camera memory, download and save
them to the local hard disk.

5.7.6. CamLiveRec

This example shows how to stream a live image or capture images in the camera memory
and play them back. Also, it lets the user set some parameters, such as exposure, frame
rate, pixel gain and ROI.

5.7.7. CamRawRead

This example shows how to open a RAW file, read images and save them.

Reference Manual 195

IDT Cameras SDK

6.

RAW Reader Library

6.1. Overview

196

The RAW Reader Library is a set of routines designed to read images from the IDT RAW
files. Each folder containing a raw sequence includes the following files:

Rawfile.xml: the main file that identifies the raw sequence.

RawsStats.xml: a file containing statistics about the download speed. It may be ignored.
RawLut.xml: a file containing the Look up table applied to the image.

*.raw files: file(s) containing the raw data.

*.cal file: a file containing the calibration if the camera is non-pipeline (M-series, X-series
and some old Y and N series).

Definitions and declarations are in the RawReadAPI.h file in the Include directory of

the SDK. The binary modules are XRawReader32.dll (32 bit version) and
XRawReader64.dll (64 bit version) in the Bin directory of the SDK.

Reference Manual

IDT Cameras SDK

6.2. Program Interface Reference

The interface includes routines to open, read and close a raw sequence.
XrGetVersion returns the version of the SDK.

XrOpen opens a raw file and returns a handle.

XrClose closes a file previously open.

XrReadlInfo reads information from the open file, such as width, height, pixel depth.

XrReadAdvancedInfo reads advanced information from an open file, such as the camera
name, the serial number and the number of pre-trigger frames.

XrRead Frame reads a frame from the raw file (if the camera is color, the frame
format is Bayer).

Reference Manual 197

IDT Cameras SDK

6.2.1. XrGetVersion

198

XR_ERROR XrGetVersion (unsigned int *pnVersionMS, unsigned int
*pnVersionLS)

Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_PATH, if the file path is not valid.

Parameters

pnVersionMS

Specifies the pointer to the variable that receives the most significant 32 bit of the version.
pnVersionLS

Specifies the pointer to the variable that receives the least significant 32 bit of the version.
Remarks

The routine reads the SDK version (64 bit) and returns it in the variables pointed by
pnVersionMS (most significant 32 bit) and pnVersionLS (least significant 32 bit). In each
32 bit field there is an upper 16 bit number and a lower 16 bit number. The version is

made of four numbers.

See also:

Reference Manual

IDT Cameras SDK

6.2.2. XrOpen

XR_ERROR XrOpen (const char *IpszFilePath, int nRGBMode,
PXR_HANDLE* pFileHandle)

Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_PATH, if the file path is not valid.

Parameters

IpszFilePath

Specifies the full path to the “rawfile.xml” file or to the folder containing the raw sequence.
nRGBMode

Specifies if the file is open as Bayer (0) or as RGB (1). If the images are monochrome,
the parameter is ignored.

pHandle

Specifies the pointer to the variable that receives the file handle

Remarks

The routine opens the RAW file with path IpszFilePath. The variable may contain be the
full path to the rawfile.xml file or the full path to the directory that includes the file and the
raw sequence. If the nRGBMode parameter is set to 0, the images are open as single
component (Bayer) images, if it is set to 1 the images are open as three component

(BGR) images.

See also: XrClose

Reference Manual 199

IDT Cameras SDK

6.2.3. XrClose

200

XR_ERROR XrClose (XR_HANDLE hFile)
Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_HANDLE, if the handle is not valid.

Parameters

hFile

Specifies the handle to an open raw file
Remarks

Closes an open raw file

See also: XrOpen

Reference Manual

IDT Cameras SDK

6.2.4. XrReadInfo

XR_ERROR XrReadlnfo (XR_HANDLE hFile, int *pnWid, int *pnHgt, int
*pnPixDepth, int *pnColor, int *pnCFAPattern, int *pnTotFrames, int *pnRotation)

Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_HANDLE, if the file handle is not valid.
XR_E_INVALID_ARGUMENTS, if one or more arguments are not valid.
Parameters

hFile

Specifies the handle to an open file

pnWid

Specifies the pointer to a variable that receives the image width in pixel
pnHgt

Specifies the pointer to a variable that receives the image height in pixel

pnPixDepth

Specifies the pointer to a variable that receives the image pixel depth (the range is 8 to
16)

pnColor

Specifies the pointer to a variable that receives whether the image is mono (0) or color (1)

pnCFAPattern

Specifies the pointer to a variable that receives the CFA pattern of the image (color only).
The values are 0 (GRBG), 1 (BGGR), 2 (RGGB), 3 (GBRG).

pnTotFrames

Specifies the pointer to the variable that receives the total number of frames in the
sequence

pnRotation

Specifies the pointer to the variable that receives the rotation (0: no rotation, 1: 90
degrees, 2: 180 degrees, 3: 270 degrees)

Remarks
This function returns the raw file information, necessary to open and display the frames.

See also: XrReadAdvancedinfo

Reference Manual 201

IDT Cameras SDK

202 Reference Manual

IDT Cameras SDK

6.2.5. XrReadAdvancedinfo

XR_ERROR XrReadAdvancedinfo (XR_HANDLE hFile, unsigned int
*pnCamSerial, char *pszCamName, int *pnPreTrigFrames, int *pnExposure, int
*pnFps, int *pnTimeFromTrig, int *pnTimeFromStart)

Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_HANDLE, if the file handle is not valid.
XR_E_INVALID_ARGUMENTS, if one or more arguments are not valid.
Parameters

hFile

Specifies the handle to an open file

pnCamSerial

Specifies the pointer to a variable that receives the camera serial number

pszCamName

Specifies the pointer to a buffer that receives the camera name

pnPreTrigFrames

Specifies the pointer to a variable that receives the number of pre-trigger frames in the
sequence

pnExposure

Specifies the pointer to a variable that receives the exposure in microseconds

pnFps

Specifies the pointer to a variable that receives the speed in frames per second

pnTimeFromTrig

Specifies the pointer to a variable that receives the time between the leading edge of
frame zero and the trigger pulse (microseconds).

pnTimeFromStart

Specifies the pointer to a variable that receives the time between the beginning of the
recording and the leading edge of frame zero (microseconds).

Remarks
This function returns some advanced information about the raw file sequence.

See also: XrReadinfo

Reference Manual 203

IDT Cameras SDK

6.2.6. XrReadFrame

XR_ERROR XrReadFrame (XR_HANDLE hFile, int nFramelndex, void*
pDataBuf, int nDataBufSize)

Return values

XR_SUCCESS if successful, otherwise

XR_E_INVALID_HANDLE, if the file handle is not valid.

XR_E_READ, if any error occurs while calling the driver.

Parameters

hFile

Specifies the handle to an open camera
nFramelndex

Specifies the index of the frame to read
pDataBuf

Specifies the pointer to the buffer where the data has to be copied.

nDataBufSize
Specifies the size of the destination buffer in bytes
Remarks

This function reads a single frame from the raw file into the specified buffer.

See also:

204 Reference Manual

7. Appendix

IDT Cameras SDK

7.1. Appendix A - Return Codes

The following table shows the values of the codes returned by the SDK APIs. The values
can be found in the XStrmAPLh header file in the Include subdirectory.

Code Value Notes

XS_SUCCESS 0 OK - No errors

XS_E_GENERIC_ERROR 1 Generic Error

XS_E_NOT_SUPPORTED 2 The function is not supported for this device

XS_E_INVALID_VALUE 3 Invalid parameter value

XS E INVALID CFG 4 Invalid XS_SETTINGS structure. The field cbSize
- - must match the size of the structure.

XS_E_INVALID_HANDLE 5 Invalid XS_HANDLE camera handle

XS E INVALID CAMERA ID 6 Invglid camera id used in XsOpenCamerg. The ID is
- - - retrieved calling the XsEnumCameras routine

XS_E_INVALID_ARGUMENT . .

S 7 Invalid function arguments

XS_E_READONLY 8 The parameter is read-only and cannot be modified

XS_E_CAM_ALREADY_OPE .

N - - 9 The camera is already open.

XS E HARDWARE FAULT 10 Hardware error. To retrieve the hardware error code
- - call the XsGetHardwareError routine.

XS E BUSY 11 The camera is busy and the operation cannot be
- performed

XS_E_QUEUE_FULL 12 The queue is full, cannot queue anymore

ES—E—BUFFER—TOO—SMAL 13 The buffer size is too small to perform the operation

XS_E_TIMEOUT 14 Operation time out.

XS E NOT RECORDING 15 An attempt of Live .while Record is done when the
- = - camera is not recording

XS_E_MALLOC 16 Unable to allocate memory

XS_E_ABORTED 17 A procedure has been aborted

XS E NOT_IN_FLASH 18 The requested information is not in flash memory

XS E _EXP_LICENSE 19 The camera license has expired

XS_E_W2D_OVERRUN 20 Memory Overrun when saving data to disk in

streaming mode.
XS_E_DMA_OVERRUN 21 DMA overrun error (X-Stream PCle camera)

Reference Manual

205

IDT Cameras SDK

7.2. Appendix B — Hardware Error Codes

The following table shows the values and a brief description of the error codes returned

by the XsGetHardwareError routine.

Value Description
0 OK — No errors
1 Generic Error
2 The handle to the hardware port is not valid
3 Operation Time Out
4 Error reading internal EEPROM
5 Error initializing HDMI output
6 The time-limited license has expired
1001 Unable to open the USB driver
1002 Error on USB “DevicelOControl” communication
1003 Unable to write to USB port
1004 Unable to read from USB port
1005 Invalid USB port (Not USB 2.0)
1006 Invalid device connected to the USB port (not IDT)
1007 The device has been disconnected from the USB cable.
2001 Ethernet Image segment is out of order
2002 Error on read from Ethernet port
2003 Error on select from Ethernet port
2004 Error opening Ethernet socket
2005 Error writing Ethernet socket options
2006 Error on Bind to Ethernet port
2007 Error sending commands through the Ethernet port
3001 Unable to Open Camera Link Serial Port
3002 Unable to write to Camera Link Serial Port
3003 Unable to read from Camera Link Serial Port
4001 Unable to open virtual camera (SD card, RAW file)
4002 Unable to read from virtual camera (SD card, RAW file)

206

Reference Manual

IDT Cameras SDK

7.3. Appendix C — Information Parameters

The following table shows the values and a brief description of the parameters that can be
read calling the XsGetCameralnfo routine. The numeric values of the parameters can be
found in the XStrmAPI.h header file in the Include sub-directory.

Parameter Value Description
Camera Model (see XS_CAM_TYPE in
XSI_CAMERA_MODEL 0 XStrmAPI.h)
Camera ID (see XS_ENUMITEM structure in
XS|_CAMERA _ID 1 XStrmAPLh)
XS_FW_VERSION 2 EEPROM Firmware version
XSI_MEMORY 3 Camera on-board memory size
XSI_REC_SIZE_SELECTABLE 4 The user can set the record length (TRUE/FALSE)
XSI_COOLED 5 The camera has a cooler (TRUE/FALSE)
XS SERIAL 6 The camera serial number (10 decimal digits
- value)
XSI_REVISION 7 The camera hardware revision (A, B, C, D, etc.)
XSI_DACS_COUNT 8 The number of DAC of camera (depends on
- model)
XSI_INT_CLOCK 9 The camera internal clock rate [Hz]
XSI_EXTRA_ROWS 10 Read out extra rows
XSI_ROW_CLOCKS 1 Number of read out clocks for each image row
XSI_SNS_TYPE 12 Sensor Type (0:monochrome, 1: color)
Sensor Model (see XS_SNS_MODEL in
XSI_SNS_MODEL 13 XStrmAPLh)
XSI_SNS _WIDTH 14 Sensor Maximum width [pixels]
XSI_SNS _HEIGHT 15 Sensor Maximum Height [pixels]
XSI_CFW_VERSION 16 Controller Firmware version
XSI_LIVE_WHILE_REC 17 The camera supports Live While Record
XSI_SOFT_TRIGGER 18 The camera supports the software trigger
XSI_FCAL_FILE_ON 19 The camera has a factory calibration data file
XSI_IRIG 20 The camera supports IRIG
XS|_BNC_CONNECTORS 21 l’:wg)number of BNC connectors on the camera (2
XSI_EXP_STEPS 22 The number of exposure steps
XSI_INTENSIFIED 23 The camera is intensified
XSI_LINK 24 The camera link type (USB 2.0 or Giga Ethernet)
XSI_MIN_EXP 25 The camera minimum exposure (1 ps or 100 ns)
XSI_MISC_CAPS 26 Camera miscellaneous capabilities
XS|_CFW_CLK_1 27 The camera controller timing parameter
(deprecated)
Reference Manual 207

IDT Cameras SDK

208

XSI_INT_REG_0,1 28,29 The camera internal registers values
XSI LIGHT 30 The camera is Light (reduced capabilities in
- resolution speed, etc.)
XS|_GIGA_ETHERNET 31 l'II':ke camera has both USB 2.0 and Giga-Ethernet
XSI_FLASH_MEMORY 32 The camera has onboard flash memory
XSI_VIDEO_MODE 33 The camera has configurable video output mode
™ ili i i
XSI_PLUS 34 The camera has the Plus™ capability, i.e. it can
acquire at double speed.
The camera name. The default name is build with
XSI_CAMERA_NAME 35 the serial number. if the camera has the flash
memory, the name is stored in the flash memory.
The link firmware version. For GE is the controller
XSI_LINK_FW_VERSION 36 firmware version, for USB is 2.0
The firmware version of the second controller
XS|_CFW2_VERSION 37 (only on cameras with USB+GE connector)
XSI_ROI_MIN 38 Minimum allowed ROI size (Width, Height)
XSI_ROI_STEP 39 ROI step size (X, Y)
XSI_FG_TYPE 40 The camera link frame grabber type (M-series)
XS|_CCAL_FILE_ON 41 The callpratlon file Vylth current condition data is
present in the hard disk.
The factory calibration file is stored in the camera
XSI_FCAL_FILE_FLASH 42 flash memory (Yes/No)
XSI_CAL_PATH 43 The path to the camera calibration files directory
The Color Filter array pattern (0:GRBG, 1:BGGR,
XSI_CFA_PATTERN 44 2:RGGB, 3:GBRG)
XS MAX_FRM_SIZE 45 The maximum size of a frame in camera memory
- (size in bytes)
XSI_NEW_DESIGN 46 The camera hardware is redesllgned with internal
- background and image processing.
XSI_CAL_NAME 47 The camera calibration file name
XSI_MOTION_TRIG 48 The camera supports motion trigger
XSI_WRITE_2_DISK 49 The camera supports direct write to disk option (M
only)
XSI_COMPRESSION 50 The camera supports compression (N cameras)
XSI_DGR_SIZE 51 The camera supports configurable datagram size
XSI_AUTO_EXPOSURE 52 The camera supports the auto-exposure
XSI_POST_REC_OP 53 The camera supports the post-recording operation
XSI_MARKER 54 The camera supports the marker option
XS|_SUB_MODEL 55 The gamera sub-model (0: undefined, 1 and
above: sub-model)
XSI_SNS_PIX_DEPTH 56 The sensor original pixel depth (8,10 or 12)
XSI_XDR_SUPPORT 57 The camera supports the XDR mode
XSI_EDR_SUPPORT 58 The camera supports the EDR mode

Reference Manual

IDT Cameras SDK

The size of the buffer that should be reserved for
XSI_LIVE_BUF_SIZE 59 Live at the beglnnlng of the camera memory. It
- guarantees that the live images will not overwrite
previous acquisitions.
XS|_RESIZE 60 The camera s_upports the resize option (for fast
thumbnail preview).
XSI_HW_BOARDS 61 The number .of bpards listed in the camera
hardware configuration
XSI_HW_INFO 62 The informatign of. the boards in the camera
hardware configuration
XSI_TNR_SUPPORT 63 The camera supports Temporal Noise Reduction
XSI_PIV_READY 64 The camera is PIV ready
XS|_CUR_CAL 65 Thg camera supports “current conditions
calibration
XSI_JPEG_SUPPORT 66 The camera supports JPEG encoding on images
XSI_DNR2_SUPPORT 67 The camera supports DNR with TNK
XSI_HW_BROC_SUPPORT 68 The camera supports hardware BROC
The camera supports asynchronous playback on
XSI_ASYNC_VIDEO_PB 69 video (HDMI) output.
XSI_EX_ROI_CNT 70 The number of extended ROI
XSI_EX_ROI_MAX_WID 71 The maximum width of extender ROI
XSI_EX_ROI_MAX_HGT 72 The maximum height of extended ROI
XSI_1PPS_SYNC_SUPPORT 73 The camera supports the 1PPS sync mode
XS|_BATTERYSTS_SUPPORT 74 The camera supports battery status and level
readout
XS|_SSD_SIZE 75 Size of onboard SSD
XSI_FAST_LIVE 76 The camera supports fast live
XSI_PTP_SUPPORT 77 The camera supports PTP.
XSI_TEMP_SUPPORT 78 The camera supports temperature read
XSI_Cl_THR_SUPPORT 79 The camera supports the Color Interpolation
threshold
XS SI PLL SUPPORT 80 The camera supports the PLL mode (external
- - - phase lock loop synchronization)
The camera supports the dynamic pulse mode
XSI_SI_DPULSE_SUPPORT 81 (external pulse mode synchronization with
variable width)
XS|_LENS_SUPPORT 82 The camera supports motorized control of lens
focus and iris.
XSI_BATTERY_INFO 83 The battery information (manufacturing date)
XSI_SHOCK_SNS_SUPPORT 84 The camera has a shock sensor on board
XSI_PAINT_SUPPORT 85 The camera supports paint parameters
XSI_DEFLICKER_SUPPORT 86 The camera supports deflicker
XSI_PTP_MODE_SUPPORT 87 The camera supports PTP mode
XSI_LENS_INFO 88 Lens information (see XS_LENS_INFO)

Reference Manual 209

IDT Cameras SDK

XSI_USB_VID 100 USB specific: Vendor ID.

XSI_USB_PID 101 USB specific: Product ID.

XSI_USB_PORT 102 USB specific: Port number.

XSI_GE_CAM_MACADD 200 Gigabit Ethernet specific: camera MAC address

XSI_GE_CAM_IPADD 201 Gigabit Ethernet specific: camera IP address

XSI GE ADP MACADD 202 Gigabit Ethernet specific: network adapter MAC
- - - address

XS|_GE_ADP_IPADD 203 Gigabit Ethernet specific: network adapter IP

address

XS| GE ADP NETMASK 204 Gigabit Ethernet specific: network adapter sub-net
- - - mask

XSI_GE_CAM_NETMASK 205 Gigabit Ethernet specific: camera sub-net mask

XSI_GE_ADP_MTU 206 Gigabit Ethernet specific: network adapter MTU

210 Reference Manual

IDT Cameras SDK

7.4. Appendix D — Camera Parameters

The following table shows the values and a brief description of the parameters that can be
read and written in the camera. The numeric values of the parameters can be found in the
XStrmAPI.h header file in the Include sub-directory.

Parameter Value R/W Description
XSP GAIN 0 RW Camg'ra! sensor gain (increases
- sensitivity)
XSP_EXPOSURE 1 R/W Camera exposure in nanoseconds [ns]
Image format (gray8, gray16, BGR24,
XSP_IMG_FORMAT 2 R/wW BGRA32, ARGB32)
Pixel depth (8,9,10,11,12 or
XSP_PIX_DEPTH 3 R/W 24.27,30,33,36)
XSP_PIX_GAIN 4 R/W Pixel Gain (1x, 2x, 4x)
Sync In configuration (internal,
XSP_SYNCIN_CFG S RIW pulse/edge, high/low, IRIG, GPS)
XSP_REC_MODE 6 R/W Record Mode (normal/circular/BROC)
XSP_EXP_MODE 7 R/W Exposure Mode (single/double)
XSP_BINNING 8 R/W Binning (1x1, 2x2, 3x3, 4x4)
XSP_Cl_MODE 9 RIW Color Interpolation algorithm — color
cameras only
XSP_TRIGIN_CFG 10 RIW Trigger In.configuration (edge hillo, switch
closure, disabled)
XSP_MAX_WIDTH 1 R Maximum image width
XSP_MAX_HEIGHT 12 R Maximum image height
XSP_ROIX 13 R/W Upper left x coordinate of ROI
XSP_ROIY 14 R/W Upper left y coordinate of ROI
XSP_ROIWIDTH 15 R/W Width of RO, in pixels
XSP_ROIHEIGHT 16 R/W Height of RO, in pixels
XSP_PERIOD 17 RIW Frame period in nanoseconds (inverse of
frame rate)
XSP_PERIOD_MIN 18 R M|n|mum frame period [ns] (inverse of
maximum frame rate)
XSP_IRIG 19 R/W Enable/Disable IRIG/GPS on camera (0/1)
X8P_SYNCOUT_CFG 20 R/W Sync Out configuration
XSP_TRIGIN_DEB 21 RIW Tri.gger. In Dg-bouncg (avoids detecting
spikes in the line as trigger)
XSP_TRIGIN_DEL 22 R/W Trigger In Delay
XSP_ SYNCOUT_WID 23 R/W Sync Out Configurable Width
XSP_ SYNCOUT_DEL 24 R/W Sync Out Delay
XSP_ SYNCIN_DEB 25 R/W Sync In De-bounce

Reference Manual

211

IDT Cameras SDK

212

XSP_ SYNCIN_DEL 26 R/W Sync In Delay
XSP_HDMI_MODE 27 RIW HDMI/SDI output mode (di:sabled, enabled
or both computer and monitor)
XSP_PREV_MODE 8 RIW Previe\(\/ mode (Full reso!ution / Low
resolution chroma subsampling)
XSP_NOISE_RED 30 R/W Noise background removal flag (on/off)
XSP_NOISE_SENS 31 R/W Pixel sensitivity correction flag (on/off)
XSP NOISE DKCOL 32 RIW Enable the use of masked (dark) columns
- - to reduce noise (on/off)
XSP_NOISE_AUTO 33 R/W Background with current settings (on/off)
Output video mode: PAL/NTSC for X
XSP_VIDEO_MODE 34 R/W cameras, 1080p/720p for other Y/Os/CC
cameras
XSP NET PERFORM 35 RIW Network peﬁormance of the Giga-
- - Ethernet connection.
XSP_PLUS 36 R/W Enable/disable Plus™ Mode (On/Off)
XSP_GAMMA 37 RIW The image gamma correction parameter
(0 to 30)
XSP FRAMES 38 R The number of frames acquired in the
- latest recording
XSP PRE TRIG 39 R The. number of pre-tri_gger frames
- - acquired in the latest recording.
XSP_BROC_LEN 40 R/W The length of each BROC segment
XSP_FRAME_CAP 41 R The camera frame capacity
XSP 1ST FRM IDX 42 R The ?n.d.ex of the first frame of the latest
- - - acquisition
XSP_STARTADDRLO 43 R The . §§arting address of the latest
acquisition (low part)
XSP_STARTADDRHI 44 R The ' .sFarting. address of the latest
acquisition (high part)
XSP NOISE APSC 45 RIW Enable the pixel sens.it'ivity correction
- — computed in current conditions
XPS_EXT_PERIOD 46 R Reads the external sync signal period
XSP_EXT_PULSE_WID 47 R VRV%?ES the external sync signal pulse
XSP_CMP_RATIO 48 RIW 1Sgé;he N camera compression ratio (40 to
XSP_FRAME_SIZE 49 R Reads the size of a frame in camera
memory [bytes]
XSP_EXPOSURE_MAX 50 R Maxmum exposure allowed in current
conditions [ns]
XSP EXPOSURE DBL 51 R Value of second exposure in double
- - exposure mode [ns]
XSP_XDR_RATIO 52 RIW Extended Dynamic Range (XDR) ratio [2

to 8] (Y4 camera only)

Reference Manual

IDT Cameras SDK

XSP_XDR_CONTRAST 53 R/W XDR contrast [1 to 100] (Y4 camera only)
XSP_DYNAMIC_NR 54 RIW gg]namic Noise reduction coefficient [0 to
XSP_SHARPEN 55 R/W Sharpen [0 to 10]
XSP_BRIGHTNESS 56 R/W Brightness [0 to 50]
XSP_CONTRAST 57 R/W Contrast [0 to 20]
XSP_HUE 58 R/W Hue [0 to 360]
XSP_SATURATION 59 R/W Saturation [0 to 20]
XSP_WB_11 60 R/W White balance matrix value 1,1 (Blue gain)
XSP_WB_12 61 R/W White balance matrix value 1,2
XSP_WB_13 62 R/W White balance matrix value 1,3
XSP_WB_21 63 R/W White balance matrix value 2,1
XSP_WB_22 64 RIW ;\;ri]ri]t)e balance matrix value 2,2 (Green
XSP_WB_23 65 R/W White balance matrix value 2,3
XSP_WB_31 66 R/W White balance matrix value 3,1
XSP_WB_32 67 R/W White balance matrix value 3,2
XSP_WB_33 68 R/W White balance matrix value 3,3 (Red gain)
XSP_BOARD_TEMP 69 R (I)?fe::g?:gsscg)lboard temperature (in 1/100
XSP_MT_CFG 70 R/W Motion Trigger modes
XSP_MT_THRESHOLD 71 R/W Motion Trigger threshold (1 to 400)
XSP_MT_ROIX 72 R/W Motion Trigger area X coordinate
XSP_MT_ROIY 73 R/W Motion Trigger area Y coordinate
XSP_MT_ROIWIDTH 64 R/W Motion Trigger area width
XSP_MT_ROIHEIGHT 75 R/W Motion Trigger area height
XSP_DGR_SIZE 76 R/W Datagram size
XSP_AE_ENABLE 77 R/W Enable auto-exposure
XSP_AE_ROIX 78 R/W Auto-exposure ROI X
XSP_AE_ROIY 79 R/W Auto-exposure ROI'Y
XSP_AE_ROIWIDTH 80 R/W Auto-exposure ROl Width
XSP_AE_ROIHEIGHT 81 R/W Auto-exposure ROl Height
XSP_AE_REFERENCE 82 R/W Auto-exposure luminance reference
XSP_AE_SPEED 83 R/W Auto-exposure reaction speed
XSP_AE_EXPOSURE 84 R Q;;c:;;xposure current value (on each
XSP_PROP 85 R/W Enable Post-recording operation

Number of memory blocks (512 bytes
XSP_PROP_WR_BLK 86 R/W each) to write in the post-recording

operation

Reference Manual

213

IDT Cameras SDK

XSP_PROP_ABORT 87 R Abort the post-recording operation
XSP_SYNCOUT_ALIGN 88 R/W Sync Out Alignment (auto-exposure)
XSP_MARKER_CFG 89 R/W Configures marker input
XSP_MARKER_VAL 90 R Read the marker from current frame
XSP_CI_THR 91 R/W Color Interpolation threshold
XSP_CLOCK_SPEED 92 R/W Clock speed (Y5 only)
XSP_HD_ROI 93 R/W ROl index for HD cameras
XSP_GAUSS_FLT 04 RIW Gaussia.n Eilter Kernel (0: disabled — 16:
max anti-alias effect)
XSP_ROT_ANGLE 95 R/W Rotation angle (0, 90, 180, 270)
XSP_FLIP 96 R/W Flip horizontally, vertically or both sides
XSP_LUT 97 R/W Lookup Table selection
XSP_LUTCHN_MASK 98 R/W Lookup Table channels mask (RGB)
Enables the data overlay on the HDMI
XSP_HDMI_OVERLAY 99 R/W output (0:OFF 1:ON)
XSP WBTBL TEMP 100 RIW The current white balance table color
- - temperature (0 for user table)
XSP_HD_ZOOM 101 RIW g)r:)e value of the digital zoom (from 1x to
XSP_HD_ZOOM_X 102 R/W The origin X coordinate of the digital zoom
XSP_HD_ZOOM_Y 103 R/W The origin Y coordinate of the digital zoom
XSP_SHARPEN_THR 104 R/W The sharpening filter threshold
XSP_SYNCIN_INV 105 R/W The “sync in” polarity inversion
XSP_DYNAMIC_NR2 106 R/W Additional Dynamic Noise Reduction
XSP_JPEG 107 R/W Enables JPEG encoding on camera
XSP_IMG_ZOOM 108 R/W Sets the image zoom for live and playback
XSP_IMG_ZOOM_WID 109 R Returns the image width after zoom
XSP_IMG_ZOOM_HGT 110 R Returns the image height after zoom
XSP AE CUR LUMA 111 R Returns the current yalue of luminance in
- = - the auto-exposure window
XSP_BROC_TOT LEN 112 RIW The total ngmber of frames acquired in a
BROC session
XSP_BROC_CURR_SECT 113 R The current BROC section.
This parameter disables the HD zoom on
XSP_HD_ZO0O0M_2R 114 RIW Y7 and keeps the original ROI
XSP_FRAME_SIZE IMG 115 R This parameter returns the 'size of the
frame when transferred as an image.
This parameter returns the total number of
XSP_SYNC_COUNT 116 R sync pulses generated in the latest
acquisition
XSP AE MIN EXP 17 RIW Value of minimum exposure in auto-
- == exposure mode.

214 Reference Manual

IDT Cameras SDK

Value of maximum exposure in auto-

XSP_AE_MAX_EXP 118 R/W
- = - exposure mode.
XSP_BATTERY_STATUS 119 R Battery status, supported by NX-Air only
XSP_JPEG_QUAL 120 R/W Jpeg compression quality (1 to 100)
XSP_SSD_STRM_PER 121 R The inverse of the SSD streaming fps
The maximum number of frames that can
XSP_SSD_MAX_FRMS 122 R be recorded in streaming mode on the
current frame rate
XSP_GAMMA_LEVEL 123 R/W First gamma level
XSP_GAMMA1 124 R/W Second gamma value
XSP_GAMMA_LEVELA1 125 R/W Second gamma level
XSP MISS STEP CNT 126 R Number of mission steps that have been
- - - configured
XSP_MISS_EXEC_CNT 197 R Number of mission steps that have been
executed
XSP_EXT_FREQ 128 R External frequency (Hz)
Valid only on RAW files. Set the
parameter to 1 if you want to read IRIG or
XSP_RAW_RD_TSTAMP 130 RIW GPS data from the RAW file without
loading the full frame.
Network speed for HG (0:automatic,
XSP_NET_SPEED 131 | RW 1 4 .100Mbps, 2:1000 Mbps)
XSP_AE_EXP_STEP 132 R/W Auto-exposure step width [ns]
XSP SYNCIN JITTER 133 RIW Returns the jitt'er in.nanoseconds for the
- - external sync signal in PLL mode
XSP_SYNCIN_DIV 134 RIW F.rame. rate divider for the external sync
signal in PLL mode.
XSP_IRIG_GPS_JITT 135 RIW IRIG/IGPS 1 PPS signal jitter in
nanoseconds.
XSP_LENS_FOCUS 136 R/W Motorized lens focus position in cm
XSP_LENS_IRIS 137 R/W Motorized lens iris aperture in F# x 100
Returns the minimum index of a raw file.
XSP_RAW_MIN_IDX 138 RW It is useful to determine the position qf the
saved raw sequence from the trigger
frame.
Shock sensor threshold in mg. The shock
XSP_SHOCK_THR 139 RW is considered a trigger if the acceleration
is above this value
Shock sensor max duration. If the
XSP_SHOCK_TIME 140 RW acceleratloq is above the threshold for a
time that is equal or larger than this
parameter, the trigger is not issued.
Index of the latest acquired frame. Read
XSP_LATEST_FRM_IDX 141 R this parameter when the camera is
recording.
XSP_LENS_ZOOM 142 R/W Motorized lens zoom position [mm]

Reference Manual

215

IDT Cameras SDK

216

Paint parameter: Gain of R component

XSP_PAINT_GAIN_R 143 R/W (CC-Mini, Xstream and R)
Paint parameter: Gain of G component
XSP_PAINT_GAIN_G 144 R/W (CC-Mini, Xstream and R)
Paint parameter: Gain of B component
XSP_PAINT_GAIN_B 145 R/wW (CC-Mini, Xstream and R)
Paint parameter: offset (pedestal) of R
XSP_PAINT_OFFS_R 146 RIW component (CC-Mini, Xstream and R)
Paint parameter: offset (pedestal) of G
XSP_PAINT_OFFS_G 147 RIW component (CC-Mini, Xstream and R)
Paint parameter: offset (pedestal) of B
XSP_PAINT_OFFS_B 148 RIW component (CC-Mini, Xstream and R)
XSP_DEFLICKER 149 R/W Deflicker parameter
XSP PTP MODE 150 RIW PTP mode for CC-Mini (0:Ethernet
- - 1:UDP).
XSP_DEFLICKER_THR 151 R/W Deflicker threshold
XSP_PTP_DELAY 152 R/W PTP power up delay in seconds
XSP_LENS_FOCUS_REL 153 R/W Motorized lens relative focus movement.
XSP_LENS_CMD 154 w Send a command to the motorized lens

Reference Manual

IDT Cameras SDK

7.5. Appendix E — Camera Announcements

The cameras will normally generate traffic only in response of specific commands. In
specific situations it will be necessary for the camera to autonomously send a message
called an Announcement. The table below lists the available announcement for USB and
GigaBit-Ethernet cameras.

Code Link Notes

The camera has been disconnected from the USB

DISCONNE USB
cable

The camera has been disconnected from the
DISCONNE_[ipaddr] GE Ethernet cable. The announcement string is followed
by underscore and the IP address in square brackets.

The lost connection has been restored. This
RESTORED USB announcement is sent only if a previous “DISCONNE”
message.

As above. The announcement string is followed by

RESTORED_[ipaddr] GE underscore and the IP address in square brackets.

The lost connection has been restored but the
REBOOTED USB camera has been rebooted. The software should read
the configuration to the camera and reset it.

As above. The announcement string is followed by

REBOOTED _[ipaddr] GE underscore and the camera IP address in square
brackets.
DETACHED USB The control of the camera has been taken by another
computer and the camera has been detached
) As above. The announcement string is followed by
DETACHED_[ipaddr] GE underscore and the IP address in square brackets.
IDLEMODE USB The camera is in idle mode (not recording).
. As above. The string is followed by underscore and
IDLEMODE _[ipaddr] GE the IP address in square brackets.
PRE_TRIG USB The camera is recording and waiting for trigger.
. As above. The string is followed by underscore and
PRE_TRIG_[ipaddr] GE the IP address in square brackets.
POSTTRIG USB The camera has received a trigger and it is recording
post-trigger frames.
. As above. The string is followed by underscore and
POSTTRIG_[ipaddr] GE the IP address in square brackets.
The camera is saving data to the SSD. The string is
DISKSAVE_[ipaddr] GE followed by underscore and the IP address in square

brackets.

Reference Manual 217

IDT Cameras SDK

218

The announcement string for HG cameras is shown below:

#0101A000_[10.10.10.100]

BYTE 0 is the '#' character, BYTE 1 and BYTE 2 are the camera ID. BYTE 3 and BYTE 4
are '01'. The announcement code is displayed in BYTE 5 and BYTE 6 of the string. BYTE
7 and BYTE 8 contain the status code only if the announcement is A4. BYTE 9 is the
underscore character and the following bytes contain the camera IP address.

The table below shows announcements for HG cameras.

Code Cam Link Notes

A" HG ETH The camera is detached. Another computer has taken control
of the camera.

‘A1 HG ETH The camera has just established a network connectivity

A" HG ETH Thg camera temperature has exceeded the normal operational
limits

A3 HG ETH The camera is losing power and will be entering battery
backup mode
The camera has changed state. The string contains the
current state in bytes 7 and 8:
00: unknown.
01: standby.

VA AT 02: live.

Ad HG ETH 03: pre-trigger recording.
04: post-trigger recording.
05: record done (images in memory).
06: download.
11: offline (disconnected).

'A5' HG ETH A root hub has not been detected in the sync/trigger bus.

‘A6’ HG ETH The camera has detected an error/ fault condition

‘AT HG ETH The camera has completed a configuration update

'A8' HG ETH The camera has restored a disconnection

Reference Manual

IDT Cameras SDK

7.6. Appendix F — Data types

This appendix describes the data types defined in the XStrmAPI.h header file.

7.6.1. XS_CAM_MODEL

The XS_CAM_MODEL type enumerates the camera models.

XS_CM_UNKNOWN: Unknown camera model

XS_CM_MP_X1:
XS_CM_MP_X4:
XS_CM_MP_X3:
XS_CM_MP_X5:
XS_CM_MP_X2:

MotionPro X-1 (was XS-3).
MotionPro X-4 (was XS-4).
MotionPro X-3 (was XS-5).
MotionPro X-5 (was XS-6).
MotionPro X-2 (was XS-7).

XS_CM_MP_M3: MotionScope M-3 (CameraLink).
XS_CM_MP_M4: MotionScope M-4 (not used).
XS_CM_MP_M5: MotionScope M-5 (CameralLink).

XS_CM_MP_Y3:
XS_CM_MP_Ya4:
XS_CM_MP_Y5:

MotionPro Y-3.
MotionPro Y-4.
MotionPro Y-5.

XS_CM_HG_100K: MotionXtra HG-100K.

XS_CM_HG_LE:
XS_CM_HG_TH:
XS_CM_HG_2K:
XS_CM_CR_2K:

XS_CM_TX_2K:

XS_CM_MP_N3:
XS_CM_MP_N4:
XS_CM_MP_N5:
XS_CM_MP_Y6:
XS_CM_MP_YT7:
XS_CM_MP_N7:
XS_CM_MP_YS8:
XS_CM_MP_N8:

MotionXtra HG-LE.
MotionXtra HG-TH.

Legacy MotionXtra HG-2000.
Legacy MotionXtra CR-2000.
Legacy MotionXtra TX-2000.
MotionXtra N/NR-3.
MotionXtra N/NR/NX-4.
MotionXtra N/NR/NX-5.
MotionPro Y-6.

MotionPro Y-7.

MotionXtra N-7.

MotionPro Y-8.

MotionXtra N-8.

XS_CM_MP_Y10: MotionPro Y-10.

XS_CM_MP_O9:

Reference Manual

MotionXTra Os-3.

219

IDT Cameras SDK

7.6.2.

220

The XS_ENUM_FLT enumerates the camera types.

XS_CM_MP_04: MotionXTra Os-4.
XS_CM_MP_O5: MotionXTra Os-5.
XS_CM_MP_O7: MotionXTra Os-7.
XS_CM_MP_08: MotionXTra Os-8.

XS_CM_CC_1060: Crash-Cam 1060.
XS_CM_CC_1520: Crash-Cam 1520.
XS_CM_CC_1540: Crash-Cam 1540.
XS_CM_CC_4010: Crash-Cam 4010.
XS_CM_CC_M1510: CrashCam Mini 1510.
XS_CM_CC_2020: CrashCam 2020.
XS_CM_CC_M5KO05: CrashCam Mini 5K05.
XS_CM_MP_0O3: MotionXtra Os3.
XS_CM_CC_M1520: CrashCam Mini 1520.
XS_CM_CC_M3510: CrashCam Mini 3510.
XS_CM_MINI_HD: CrashCam Mini HD/POV.
XS_CM_CC_M1540: CrashCam Mini 1540.
XS_CM_CC_M3525: CrashCam Mini 3525.
XS_CM_PCIE_X7: PCle XStream 720p.
XS_CM_PCIE_X14: PCle XStream 1440p.
XS_CM_XSM_1540: XStream Mini 1540.
XS_CM_XSM_3520: XStream Mini 3520.
XS_CM_XSM_STICK: XStream Stick.
XS_CM_XSM_5K: XStream Mini 5K.

XS_CM_XSM_4KV: XStream Mini 4K-Veloce.

XS_CM_R_HD: R-series HD.
XS_CM_CC_STICK: CrashCam Stick.

XS_ENUM_FLT

XS_EF_USB_X: MotionPro X on USB 2.0.

XS_EF_GE_X: MotionPro X on Giga Ethernet.
XS_EF_HG: MotionXtra HG on Giga Ethernet.

XS_EF_CL: MotionScope M on Camera Link.
XS_EF_USB_Y: MotionPro Y on USB 2.0.

Reference Manual

7.6.3.

IDT Cameras SDK

XS_EF_GE_Y: MotionPro Y on Giga Ethernet.

XS_EF_LG_RL: MotionXtra Legacy on Giga Ethernet.
XS_EF_GE_N: MotionXtra N/NR/NX on Giga Ethernet.
XS_EF_GE_NO: MotionXtra N/NR/NX/O on Giga Ethernet.
XS_EF_PCI_X: X-Stream PCle on PCle or Thunderbolt.
XS_EF_VCAM: RAW virtual cameras (RAW files).
XS_EF_VSSD: SSD virtual camera (O camera removable SSD).

XS_LINK_TYPE

The XS_LINK_TYPE type enumerates the links.

7.6.4.

XS_LT_USB20: USB 2.0 link.

XS_LT_GIGAETH: Giga Ethernet (1 Mbps).
XS_LT_CAMLINK: CameraLink (Frame Grabber).
XS_LT_SDCARD: SD card or removable SSD.
XS_LT_RAWFILE: Raw File (fast download).
XS_LT_WIFI: Wi-Fi (Ethernet)

XS_LT_PCIE: PCI Express.

XS_LT_TB: Thunderbolt.

XS_LT_10GIGAETH: 10 Gigabit Ethernet

XS_SNS_TYPE

The XS_SNS_TYPE type enumerates the sensor types.

7.6.5.

XS_ST_MONOCHROME: monochrome sensor.
XS_ST_COLOR: color sensor.

XS_CFA_PATTERN

The XS_CFA_PATTERN type enumerates the color filter array patterns (color cameras).

XS_CFAP_GRBG: GRBG pattern.
XS_CFAP_BGGR: BGGR pattern.
XS_CFAP_RGGB: RGGB pattern.
XS_CFAP_GBRG: GBRG pattern.

Reference Manual 221

IDT Cameras SDK

7.6.6.

XS_FG_TYPE

The XS_FG_TYPE type enumerates the camera link frame grabber types (M-series).

7.6.7.

XS_FG_COR_X64CL: Dalsa-Coreco X64 Xcelera-CL PX4.
XS_FG_NI_PCIE1429: National Instruments PCle-1429.
XS_FG_MATROX_H_S: Matrox Helios/Solios.
XS_FG_EPIXCI_E4: Epix PIXCI EA4.
XS_FG_BF_KARBON: Bitflow Karbon-CL.

XS_SNS_MODEL

The XS_SNS_MODEL type enumerates the sensor models.

7.6.8.

XS_SM_UNKNOWN: unknown sensor model.

XS_SM_MV13: MV-13 for X-Stream XS3 cameras.

XS_SM_MV02: MV-02 for HS4 and X4 cameras.
XS_SM_RL_LEGACY: Redlake legacy for HG2000, CR, TX cameras.
XS_SM_MAKO: MAKO for HG100K, HG-LE and HG-TH cameras
XS_SM_SYRIUS: Sirius for HS3, X3, M3 and N3 cameras.
XS_SM_ORION: Orion for X5, M5, Y5 and N5 cameras.
XS_SM_OTION_II: Orion Il for new Y5, M5 and N5 cameras.
XS_SM_NORTH_STAR: North Star for Y4 cameras
XS_SM_NORTH_STAR_II: North Star Il for new Y4 and N4 cameras
XS_SM_NOZOMI: Nozomi for Y6 cameras.

XS_SM_PEGASUS: Pegasus for Os10 cameras.
XS_SM_SIRIUS_II: Sirius Il for Os7.

XS_SM_GEMINI: Gemini for Os9.

XS_SM_LEO: Leo for Os16.

XS_SM_STK: Stick Sensor.

XS_SM_RCHD: R-series HD sensor.

XS_SM_4KVEL: XS-MINI 4K Veloce sensor.

XS_REVISION

The XS_REVISION type enumerates the camera revision numbers.

222

XS_REV_A: revision A (original).
XS_REV_B, C, D: revision B, C, D, etc.

Reference Manual

IDT Cameras SDK

7.6.9. XS_MISC_CAPS

The XS_MISC_CAPS type enumerates miscellaneous capabilities of the camera.

7.6.10.

XS_CAP_NR: the camera is an NR.

XS_CAP_NX: the camera is an NX.

XS_CAP_NXT: the camera is an NX-Tra.

XS_CAP_NXA: the camera is an NX-Air.

XS_CAP_DNR2: the camera supports DNR.
XS_CAP_HWBROC: the camera supports Hardware BROC.
XS_CAP_JPEG: the camera supports JPEG.
XS_CAP_1PPS: the camera supports 1PPS input and output.
XS_CAP_BATSTS: the camera supports Battery status read.
XS_CAP_FBCAM: the camera is a FB model.

XS_CAP_PIV: the camera has the PIV option.

XS_CAP_OS: the camera is an Os (sealed).
XS_CAP_GPSMOD: the camera has the internal GPS module.
XS_CAP_INX: the camera is an industrial NX camera.
XS_CAP_JPLROC: the camera is a JPL ROC model
XS_CAP_PTP: the camera supports PTP.

XS_CAP_IS1024: the camera is an N4/NR4/NX4 that supports the 1024x1024
resolution.

XS_CAP_0S3: the camera is an Os version 3.

XS_CAP_OSA: the camera is an Os Airborne.

XS_CAP_PLL: the camera supports the Phase Lock Loop mode.
XS_CAP_IRIGMD: the camera has the internal IRIG module.

XS_CAP_SDI_FW: the camera is a CC mini HD/POV with a special firmware for SDI
output.

XS_CAP_24GB: the camera has 24GB onboard DDR.

XS_PRE_PARAM

The XS_PRE_PARAM type enumerates the pre-configuration parameters.

XSPP_IP_ADDRESS: the camera IP address (GE models only).
XSPP_NET_AD_IP: the network adapter IP address (GE models only)
XSPP_IP_ADD_EX: the camera IP address (extended — GE models only)
XSPP_CAM_CMD_PORT: the camera command port (extended — GE models only)

Reference Manual 223

IDT Cameras SDK

7.6.11.

XSPP_NET_ADD_CMD_PORT: the application command port (extended — GE
models only)

XSPP_GET_IP_ADDRESS: read the camera IP address and sub-net mask
(extended — HG models only).

XSPP_DB_FOLDER: set the path to the database folder (used to enumerate RAW
files virtual cameras).

XSPP_CAM_DFL_GW: camera default gateway (not active yet).
XSPP_DISABLE_1024: disable 1024x1024 resolution on Y4, N4, NR4 and NX4.
XSPP_REBOOT_FW: reboot camera firmware

XSPP_PCIX_DMASIZE: size of DMA buffer for X-Stream PCle camera.

XS_STATUS

The XS_STATUS enumerates the camera status:

XSST_UNKNOWN: unknown status.

XSST_IDLE: the camera is idle (ready to operate).

XSST_LIVE: the camera is in live mode (HG-only).
XSST_REC_PRETRG: the camera is recording pre-trigger frames.
XSST_REC_POSTRG: the camera is recording post-trigger frames.
XSST_REC_DONE: the camera has recorded (HG-only).
XSST_DOWNLOAD: the camera is downloading images (HG-only).
XSST_DISCONNECT: the camera is disconnected (X and Y only).

XSST_DWL_SD: the camera is downloading data to the SD card in the IRIG-Flash
module (Y only).

XSST_DWLUPL_SSD: the camera is downloading/uploading data to/from the SSD.
XSST_VPB_ON_COFF: Video (HDMI) playback is on but the HDMI is disconnected.
XSST_VPB_ON_CON: Video (HDMI) playback is on and the HDMI is connected.

XSST_PLAYBACK: the camera is playing back images to the video output (CC mini
HD only with special firmware).

7.6.12. XS_EXP_MODE

224

The XS_EXP_MODE enumerates the camera exposure modes:

XS_EM_SINGLE_EXP: single exposure.

XS_EM_DOUBLE_EXP: double exposure.

XS_EM_EDR: Extended Dynamic Range with single image (Y4, N4 only).
XS_EM_XDR: eXtended Dynamic Range with double exposure (other cameras).

Reference Manual

7.6.13.

The

7.6.14.

The

7.6.15.

The

IDT Cameras SDK

XS_REC_MODE

XS_REC_MODE enumerates the camera record modes:

XS_RM_NORMAL: normal acquisition mode.
XS_RM_CIRCULAR: circular acquisition mode.
XS_RM_BROC: burst record on command (HG-only).
XS_RM_ROC: record on command (HG-only).
XS_RM_READY: ready mode waiting for trigger (HG-only).

XS_SYNCIN_CFG
XS_SYNCIN_CFG enumerates the configuration of the Sync In:

XS_SIC_INTERNAL.: internal frame rate acquisition.

XS_SIC_EXT_EDGE_HI: external, exposure starts on edge, active High.
XS_SIC_ EXT_EDGE_LO: external, exposure starts on edge, active Low.
XS_SIC_ EXT_PULSE_HI: external, exposure integrated over pulse, active High.
XS_SIC_EXT_PULSE_LO: external, exposure integrated over pulse, active Low
XS_SIC_IRIG_DTS_EXT: IRIG/DTS mode with external generation of 1pps signal.
XS_SIC_IRIG_DTS_INT: IRIG/DTS mode with internal generation of 1pps signal.
XS_SIC_1PPS: the sync in signal is a 1PPS signal.

XS_SIC_PTP: the sync in signal is PTP.

XS_SIC_EPPL_EDGE_HI: phase lock loop (edge high).
XS_SIC_EPPL_EDGE_LO: phase lock loop (edge low).
XS_SIC_EDYN_PULSE_HI: external dynamic pulse high. Pulse width changes.
XS_SIC_EDYN_PULSE_LO: external dynamic pulse low. Pulse width changes.

XS_SYNCOUT _CFG
XS_SYNCOUT_CFG enumerates the configuration of the Sync Out for Y cameras:

XS_SOC_DFL.: default behavior.

XS_SOC_DFL_INV: default behavior (inverted).

XS_SOC_CFGWID: the sync out signal width is configurable.
XS_SOC_CFGWID_INV: the sync out signal width is configurable and inverted.
XS_SOC_DISABLED: the sync out signal is disabled.

XS_SOC_DBLEXP: the sync out signal reproduces the double exposure pulses.
XS_SOC_1PPS: the camera generates a 1PPS signal on the sync out.

Reference Manual 225

IDT Cameras SDK

7.6.16. XS_SYNCOUT_ALIGN

The XS_SYNCOUT_ALIGN enumerates the alignment of the Sync Out for Y cameras in
auto-exposure mode:

+ XS_SOA_EXP: the sync out is aligned with the exposure.
* XS_SOA_SYNC_IN: the sync out is aligned with the Sync In.

7.6.17. XS_TRIGIN_CFG

The XS_TRIGIN_CFG enumerates the configuration of the Event Trigger:

* XS_TIC_EDGE_HI: the trigger starts on edge, active High.

*+ XS_TIC_EDGE_LO: the trigger starts on edge, active Low.

* XS_TIC_SWC: the trigger starts on Switch Closure.

* XS_TIC_GATE_HI: the trigger acts as a gate to the acquisition (high level).
*+ XS_TIC_GATE_LO: the trigger acts as a gate to the acquisition (low level).
* XS_TIC_DISABLED: the trigger is disabled.

7.6.18. XS_MTRIG_CFG

The XS_MTRIG_CFG enumerates the motion trigger modes:

* XS_MT_DISABLED: the motion trigger is disabled.

* XS_MT_AVG_CHG: average brightness changes.

« XS_MT_AVG_INCR: average brightness increases.

* XS_MT_AVG_DECR: average brightness decreases.
* XS_MT_MOTION: any motion is detected.

7.6.19. XS_IMG_FMT

The XS_IMG_FMT enumerates the image formats:

* XS_IF_GRAYS8: gray 8 (8 bit).

* XS_IF_BAYERS: Bayer pattern 8 (8 bit).

* XS_IF_GRAY16: gray 16 (10 bit).

* XS_IF_BAYER16: Bayer pattern 16 (10 bit).

* XS_IF_BGR24: Windows 24 bit BGR.

* XS_IF_BGRA32: Windows 32 bit BGRA (byte A is not used).

* XS_IF_ARGB: MAC 32 bit ARGB (byte A is not used).

* XS_IF_GRAY8X: 8 bit grayscale obtained by RGB color image (color cameras only).

+ XS_IF_GRAY16X: 16 bit grayscale obtained by RGB color image (color cameras
only).

226 Reference Manual

IDT Cameras SDK

*+ XS_IF_BGR48: Windows 48 bit BGR.

7.6.20. XS_CI_MODE

The XS_CIl_MODE enumerates the color interpolation algorithms:

* XS_CIM_BILINEAR: the bilinear algorithm.
*+ XS_CIM_ADVANCED: advanced algorithm.
* XS_CIM_ADVANCED2: advanced algorithm.

7.6.21. XS_SENSOR_GAIN
The XS_SENSOR_GAIN enumerates the sensor digital gains:

* XS_SG_1_00: no gain (default).

* XS_SG_1_41: gain 1.41 (square root of 2).

« XS_SG_2_00: gain 2.

* XS_SG_2_82: gain 2.81 (2 times the square root of 2).

7.6.22. XS_PIX_GAIN

The XS_PIX_GAIN enumerates the camera pixel gains:

* XS_PG_1X: gain 1x (bits 2 to 9).
* XS_PG_2X: gain 2x (bits 1 to 8).
*+ XS_PG_4X: gain 4x (bits 0 to 7).

7.6.23. XS_LUT

The XS_PIX_GAIN enumerates the camera lookup tables:

* XS_LUT_OFF: disabled (no LUT applied)
* XS_LUT_USER: user-defined lookup table.
* XS_LUT_A: lookup table A.

* XS_LUT_B: lookup table B.

* XS_LUT_C: lookup table C.

* XS_LUT_D: lookup table D.

* XS_LUT_E: lookup table E.

* XS_LUT_G14: Gamma 1.4 lookup table.

* XS_LUT_G18: Gamma 1.8 lookup table.

* XS_LUT_G20: Gamma 2.0 lookup table.

* XS_LUT_REC709: REC 709 lookup table.
+ XS_LUT_BT2020: BT2020 lookup table.

Reference Manual 227

IDT Cameras SDK

7.6.24.

7.6.25.

XS_LUT_MASK

The XS_PIX_GAIN enumerates the lookup table channels mask:

XS_LUTMSK_OFF: disabled (no LUT applied)
XS_LUTMSK_R: enable red channel.
XS_LUTMSK_G: enable green channel.
XS_LUTMSK_B: enable blue channel.
XS_LUTMSK_ALL: all channels are enabled.

XS_BINNING

The XS_BINNING enumerates the binning values.

XS_BIN_1X1: binning 1x1 (default — no binning).
XS_BIN_2X2: binning 2x2.
XS_BIN_3X3: binning 3x3.
XS_BIN_4X4: binning 4x4.

7.6.26. XS_HDMI_MODE

The XS_HDMI_MODE enumerates the HDMI output modes (Y cameras):

XS_HDMI_OFF: the HDMI output is off.

XS_HDMI_ON: the HDMI output is on.

XS_HDMI_TRANSFER: the HDMI output is transferring the acquisition.
XS_HDMI_INDEPENDENT: the HDMI output is independent from the computer.

7.6.27. XS_VIDEO_MODE

228

The XS_VIDEO_MODE enumerates the video output modes (X, HG and Y cameras):

XS_VM_X_PAL: PAL output for X and HG cameras.
XS_VM_X_NTSC: NTSC output for X and HG cameras.
XS_VM_Y_720P_60HZ: 720p @ 60 Hz output.
XS_VM_Y_1080_60HZ: 1080p @ 60 Hz output.
XS_VM_Y_1080_25HZ: 1080p @ 25 Hz output.
XS_VM_Y_1080_24HZ: 1080p @ 24 Hz output.
XS_VM_Y_1080_30HZ: 1080p @ 30 Hz output.

Reference Manual

IDT Cameras SDK

7.6.28. XS_VIDEO_PB

The XS_VIDEO_PB enumerates the HDMI asynchronous playback modes (Y cameras):

» XS_VPB_OFF: the asynchronous playback is off.
* XS_VPB_FWD: the asynchronous playback is on and forward.
« XS_VPB_REW: the asynchronous playback is on and rewind.

7.6.29. XS_PREV_MODE

The XS_PREV_MODE enumerates the preview modes (Y cameras):

* XS_PM_FULL_RES: the preview is done at full resolution.

* XS_PM_LOW_RES: the preview is done at half the resolution (Chroma sub
sampling).

7.6.30. XS_LIVE

The XS_LIVE enumerates the Live commands

* XS_LIVE_STOP: stop the fast live.
e XS_LIVE_START: start the fast live.

7.6.31. XS_CALLBACK_FLAGS
The XS_CALLBACK_FLAGS enumerates the Queue callback flags:

* XS_CF_DONE: callback is called only when the operation is completed.
* XS_CF_FAIL: callback is called only when the operation fails.
* XS_CF_CBONLY: install callback only and do not start acquisition.

7.6.32. XS_CALIB_OPCODE
The XS_CALIB_OPCODE enumerates the calibration operations:

* XS_C_BKG_ALL: acquire background in optimal conditions.

e XS_C_FILE_RELOAD: reload factory calibration coefficients.

* XS_C_FILE_DOWNLOAD: download calibration file from the camera.

* XS_C_CURRENT_BKG: calibrate background in current conditions.

« XS_C_CURRENT_PSC: computes PSC coefficients in current conditions.

* XS_C_CURRENT_RESET: reset current conditions coefficients and delete file.
* XS_C_MEMORY: perform memory calibration (CC-Mini only).

e XS_C_ABORT: abort any of the above operations.

Reference Manual 229

IDT Cameras SDK

7.6.33. XS_DGR_SIZE
The XS_DGR_SIZE enumerates the size of Ethernet packets (Jumbo packets):

* XS_DGR_1488: default size of regular Ethernet packets (no Jumbo).
+ XS_DGR_2888: 2888 bytes.

+ XS_DGR_4328: 4328 bytes.

» XS_DGR_5768: 5768 bytes.

+ XS_DGR_7208: 7208 bytes.

* XS_DGR_8640: 8640 bytes (jumbo packets maximum size).

7.6.34. XS_PR_OP

The XS_PR_OP enumerates the operations that can be performed by the camera after
each acquisition:

* XS_PR_NOTHING: no op.
*+ XS_PR_DWL_SD: download the images to the SD card in the Flash-IRIG module.
* XS_PR_SSD_STREAM: enable SSD streaming mode.
e XS_PR_SSD_BACKUP: enable SSD backup mode.
7.6.35. XS_MARKER_CFG

The XS_MARKER_CFG enumerates the configuration of marker input:

* XS_MRK_OFF: no marker.

* XS_MRK_SYNCIN: the marker will be detected form the Sync In input.

* XS_MRK_TRIGIN: the marker will be detected from the Trigger In input.
7.6.36. XS_CLOCK_SPEED

The XS_CLOCK_SPEED enumerates the camera internal clock speed:

+ XS_CLS_LOWER: lower clock speed.

+ XS_CLS_MIDDLE: middle clock speed.

* XS_CLS_LARGER: larger clock speed.
7.6.37. XS_HD_ROI

The XS_HD_ROI enumerates the pre-defined regions of interest for the HD cameras:

* XSHD_RES_00: first resolution (model-dependent).
* XSHD_RES_01: second resolution (model-dependent).

230 Reference Manual

IDT Cameras SDK

¢ XSHD_RES_04: fourth resolution (model dependent).

7.6.38. XS_HD_ZOOM

The XS_HD_ZOOM enumerates the digital zoom values

*+ XSHD_Z_100: no zoom (default).
e XSHD_Z 125: 1.25X zoom.
*+ XSHD_Z_150: 1.5X zoom.
« XSHD_Z 200: 2X zoom.

e« XSHD_Z 300: 3X zoom.

*+ XSHD_Z_400: 4X zoom.

e XSHD_Z 500: 5X zoom.

e XSHD_Z 600: 6X zoom.

*+ XSHD_Z_700: 7X zoom.

e XSHD_Z 800: 8X zoom.
 XSHD_Z 900: 9X zoom.

*+ XSHD_Z_1000: 10X zoom.
« XSHD_Z 1200: 12X zoom.
e XSHD_Z 1400: 14X zoom.
*+ XSHD_Z_1600: 16X zoom.

7.6.39. XS_ROT_ANGLE

The XS_ROT_ANGLE enumerates the available rotations:

* XS_ROT_0: no rotation (default).

+ XS_ROT_90: 90 degrees rotation.

* XS_ROT_180: 180 degrees rotation.
* XS_ROT_270: 270 degrees rotation.

7.6.40. XS_FLIP

The XS_FLIP enumerates the available flips:

* XS_FLIP_NONE: no flip (default).
* XS_FLIP_HORZ: horizontal flip.

* XS_FLIP_VERT: vertical flip.

* XS_FLIP_BOTH: both sides flip.

Reference Manual 231

IDT Cameras SDK

7.6.41.

XS_ATTRIBUTE

The XS_ATTRIBUTE enumerates the attribute types:

XS_ATTR_MIN: minimum value of the parameter.
XS_ATTR_MAX: maximum value of the parameter.
XS_ATTR_READONLY: the parameter is read-only.
XS_ATTR_DEFAULT: the default value of the parameter.

7.6.42. XS_JPEG

The XS_JPEG enumerates the jpeg compression type:

XS_JPEG_OFF: disabled.

XS_JPEG_CVT: if enabled, the data is converted in the driver and returned
uncompressed.

XS_JPEG_RAW: if enabled, the data is not converted and returned compressed.

7.6.43. XS_BATTERY

The XS_BATTERY enumerates the battery condition.

XS_BAT_LEVEL_MASK: masks the battery level bits.
XS_BAT_STATE_MASK: masks the battery status bits.
XS_BAT_STATE_DISCHARGING: the power supply is not connected.

XS_BAT_STATE_CHARGING: the power supply is connected and charging the
battery.

XS_BAT_STATE_FULLY_CHARGED: the battery is fully charged.
XS_BAT_DISABLED: the battery is connected but it's disabled.
XS_BAT_UNKNOWN: unknown state or not supported.

7.6.44. XS_LENS_INFO

The XS_LENS_INFO enumerates lens information.

XS_LENS_TYPE: 4 bits returning lens type (0: none, 1:Canon 2: MFT, 4:IDT MFT).
XS_LENS_ZOOM: lens has configurable zoom. If O, the lens is prime.
XS_LENS_MOTOR_ZOOM: lens has motorized zoom.

7.6.45. XS_LENS_CMD

The XS_LENS_CMD enumerates some lens commands.

232

XS_LCMD_POWEROFF: cut lens power for safe removal.

Reference Manual

IDT Cameras SDK

* XS_LCMD_RESET: restores the lens after a power off (no need to unplug and plug
the lens).

7.6.46. XS_ERROR

The XS_ERROR enumerates the return codes. See Appendix A.

7.6.47. XS_INFO

The XS_INFO enumerates the camera information index. See Appendix B.

7.6.48. XS_PARAM

The XS_PARAM enumerates the camera parameters. See Appendix C.

Reference Manual 233

IDT Cameras SDK

7.7. Appendix G — Structures

This appendix describes the structures defined in the XStrmAPI.h header file.

7.7.1. XS_SETTINGS

234

The XS_SETTINGS structure is an opaque structure that contains the all the camera
parameters in compact format. The user may access the structure using the
XsSetParameter and XsGetParameter routines.

typedef struct
{
XSULONG32 cbSize;
XSULONG32 nbata[255 1;
} XS _SETTINGS, *PXS SETTINGS;

Members
cbSize

It specifies the size of the structure. Must be set to sizeof (XS_SETTINGS), otherwise the
related functions doesn't work.

nData

It specifies the opaque structure data, an array of 255 XSULONG32 values.

Reference Manual

7.7.2. XS_ENUMITEM

IDT Cameras SDK

The XS_ENUMITEM structure contains information about a camera. It must be used in

the camera enumeration procedure with the XsEnumCameras routine.

typedef struct
{
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32

XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
XSULONG32
} XS ENUMITEM,

nCamerald;
nCameraModel;
nSensorType;
nSensorModel;
nSerial;
nRevision;
nEFWVersion;
nCFWVersion;
bIsOpen;
nLinkType;
bl Rl G

bl ntensified;
nl nt d ock;
nLi cl nf o;
nSubMbdel ;
bEDR

nM nExp;
nGeAdpMIuU

nM scCaps;
bDgr Si ze;
bNewDesi gn;

bLi ght;

bPl us;

bG gakEt h;
nUsbVI D
nUsbPI D
nUsbPort ;
nGeCamVACAddLo
nGeCanmVACAddHI ;
nGeCam PAdd;
nGeCamNet Mask;
nGeCanCndPort ;
nGeAdpMVACAddLo;
nCGeAdpMACAddHI ;
nCGeAdpl PAdd;
nCGeAdpNet Mask

char szCaner aNane[L_CAMNAME]

nCFW2Ver si on;
nFGlIype
nCFWBVer si on;
nCFAPat t ern
nSSDSizelo;
nSSDSizeHi;
nBatteryInfo;
nDDRSizelo;
nDDRSizeHi;
anFi | I [10];
*PXS_ ENUMITEM;

Reference Manual

235

IDT Cameras SDK

Members
nCamerald

It specifies the ID which identifies a camera among others. The user must use this
camera id to open the camera with XsOpenCamera.

nCameraModel

It specifies the camera model (X3, X4, X5, etc.).

nSensorType

It specifies the sensor type (monochrome or color).
nSensorModel

It specifies the sensor model.

nSerial

It specifies the camera serial number (10 decimal digits value).
nRevision

It specifies the camera hardware revision number (A, B, C, etc.).
nEFWVersion

It specifies the EEPROM firmware version.

nCFWVersion

It specifies the Controller firmware version.

blsOpen

It specifies whether the camera is currently open or not.
nLinkType

It specifies the camera link (USB 2.0 or Giga Ethernet).

bIRIG

It specifies if the camera supports IRIG

bintensified

It specifies if the camera is intensified.

nintClock

It specifies the internal clock frequency in Hertz.

nLiclnfo

It specifies the license information (LSW: max count, MSW: current count).
nSubModel

It specifies the camera sub-model. If the value is 0 the sub-model is not specified.
bEDR

It specifies if the camera supports the EDR mode (Y4 and N4 cameras only).
nMinExp

It specifies the camera minimum exposure (1 us or 100 ns).

236 Reference Manual

IDT Cameras SDK

nGeAdpMTU

It specifies the network adapter MTU value (Maximum Transmission Unit). It is useful to
determine whether the jumbo packets may be enabled or not on the camera.

nMiscCaps

It specifies the camera miscellaneous capabilities (bit map).
nMinExp

It specifies the camera minimum exposure (1 ys or 100 ns).
bDgrSize

It specifies whether the camera supports configurable datagram size, i.e. jumbo packets
(Ethernet).

bNewDesign
It specifies whether the camera is redesigned or not (image processing is on-board)
bLight

It specifies whether the camera is Light or not (Light cameras have reduced capabilities,
like speed and resolution)

bPlus

It specifies if the camera has the Plus™ capability, i.e. it can acquire at double speed.
bGigaEth

It specifies if the camera has the Giga-Ethernet connector.

nUsbVID

It specifies the USB Vendor ID (USB 2.0 cameras only).

nUsbPID

It specifies the USB Product ID (USB 2.0 cameras only).

nUsbPort

It specifies the USB Port Number (USB 2.0 cameras only).

nGeCamMACAddLo

It specifies the low part of the camera MAC address (Gigabit Ethernet cameras only).
nGeCamMACAddHi

It specifies the high part of the camera MAC address (Gigabit Ethernet cameras only).
nGeCamlIPAdd

It specifies the camera IP Address (Gigabit Ethernet cameras only).
nGeCamNetMask

It specifies the camera subnet mask (Gigabit Ethernet cameras only).
nGeCambDflitGw

It specifies the camera default gateway (Gigabit Ethernet cameras only). Not used yet.
nGeCamCmdPort

It specifies the camera Command UDP Port (GE cameras only). Do not change if not
necessary.

Reference Manual 237

IDT Cameras SDK

nGeAdpMACAddLo

It specifies the low part of the Ethernet adapter MAC address (GE cameras only).
nGeAdpMACAddHi

It specifies the high part of the Ethernet adapter MAC address (GE cameras only).
nGeAdplPAdd

It specifies the Ethernet adapter IP Address (GE cameras only).
nGeAdpNetMask

It specifies the Ethernet adapter subnet mask (GE cameras only).
szCameraName

It specifies if the camera name.

nFGType

It specifies the Camera Link Frame Grabber model (M-Series cameras only).
nCFW3Version

It specifies the controller firmware version 3 (build number).

nCFAPattern

It specifies the CFA Bayer pattern (see XS_CFA_PATTERN).

nSSDSizelo, nSSDSizeHi

It specifies the size of the on-board SSD.

nBatteryinfo

It specifies the battery info. The LS word includes the manufacturing date (day: 5 bits,
month: 4 bits, year after 1980: 7 bits), the MS word includes the battery serial number.

nDDRSizelLo, nDDRSizeHi
It specifies the size of onboard DDR.
anFill[10]

It specifies an array of unused parameters.

238 Reference Manual

IDT Cameras SDK

7.7.3. XS_FRAME

The XS_FRAME structure contains information about the image frame to be grabbed. It is
used to acquire images in the XsSynchGrab and XsQueueOneFrame routines.

typedef struct

{
void *pBuffer;
XSULONG32 nBufSize;
XSULONG32 nImages;
XSULONG32 nFormat;
XSULONG32 nWidth;
XSULONG32 nHeight;
XSULONG32 nPixDepth;
XSULONG32 nErrorCode;

} XS_FRAME, *PXS FRAME;

Members

pBuffer

It specifies the pointer to the data. This field must be filled before calling any related
routine.

nBufSize

It specifies the data buffer size, in bytes. This field must be filled before calling any related
routine.

nlmages

It specifies the number of images to acquire (1 in single exposure mode, 2 in double
exposure mode); the buffer size must be enough to contain the specified number of
images. This field must be filled before calling any related routine.

nFormat

It specifies the image format; this field is filled when the related routine returns.
nWidth

It specifies the image width; this field is filled when the related routine returns.
nHeight

It specifies the image height; this field is filled when the related routine returns.
nPixDepth

It specifies the image pixel depth; this field is filled when the related routine returns.
nErrorCode

It specifies the result code of the Grab operation.

Reference Manual 239

IDT Cameras SDK

7.7.4. XS_BROC_SECTION

240

The XS_BROC_SECTION contains information about a specific BROC section (address,

firs frame index and time from trigger).

typedef struct XS BROC_SECTION
{
XSULONG32 nStartAddrLo;
XSULONG32 nStartAddrHi;
XSULONG32 nlstFrmIdx;
XSULONG32 nTrgTime;
} XS XS BROC_SECTION, *PXS BROC SECTION;

Members

nStartAddrLo

It specifies the low part of the segment starting address.
nStartAddrHi

It specifies the hight part of the segment starting address.
n1stFrmldx

It specifies the index of the first frame of the BROC section.

nTrgTime

It specifies the time from trigger.

Reference Manual

IDT Cameras SDK

7.7.5. XS_BROC

The XS_BROC structure contains an array of 256 BROC sections (see above).

typedef struct XS BROC
{

XS XS BROC_SECTION sect[256];
} XS_XS BROC, *PXS BROC;

Members

sect

It specifies the array of 256 BROC sections

Reference Manual 241

IDT Cameras SDK

7.7.6. XS_GPSTIMING

242

The XS_GPSTIMING contains timing information about the IRIG/GPS data.

typedef struct XS GPSTIMING

{
XSULONG32 nSignalPresent;
XSULONG32 nYear;
XSULONG32 nDayOfYear;
XSULONG32 nHours;
XSULONG32 nMinutes;
XSULONG32 nSeconds;
XSULONG32 nMicroSeconds;
XSULONG32 nFlags;

} XS GPSTIMING, *PXS GPSTIMING;

Members

nSignalPresent

It specifies if the IRIG/GPS signal is currently locked.

nYear

It specifies the year.
nDayOfYear

It specifies the day of the year (1 to 365).
nHours

It specifies the hours.
nMinnutes

It specifies the minutes.
nSeconds

It specifies the seconds.
nMicroseconds

It specifies the microseconds.

nFlags

It specifies some flags depending on the format (for ex. CF on X cameras).

Reference Manual

IDT Cameras SDK

7.7.7. XS_W2DCFG

The XS_W2DCFG contains configuration parameters for streaming to local disk.

typedef struct XS W2DCFG

{
XSULONG32 nDDRBufSize;
XSULONG32 nOpt;
XSULONG32 nDrives;
char szVolumel[64];
char szVolume2[64];
char szVolume3[64];
char szVolume4d[64];
char szDirectory([512];

} XS GPSTIMING, *PXS GPSTIMING;

Members

nDDRBufSize

It specifies the size of the DDR buffer (M cameras only)
nOpt

It specifies the write to disk options (not used).

nDrives

It specifies the number of drives (1, 2 or 4).

szVolume1, 2, 3, 4

It specifies the disk volumes

szDirectory

It specifies the directory name to be added to volumes.

Reference Manual 243

IDT Cameras SDK

7.7.8. XS_AsyncCallback

244

The XS_AsyncCallback is the prototype of the callback function passed to the
XsQueueOneFrame, XsQueueCameraSettings and XsMemoryStartGrab routines. The
callback is called by the driver when the operation is completed.

typedef void (XSTREAMAPI *XS AsyncCallback)
(

void *pUserData,

XS ERROR nErrCode,

XSULONG32 nFlags

Members

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
nErrCode

It specifies the operation return code.

nFlags

It specifies a combination of the XS_CALLBACK_FLAGS values.

Reference Manual

IDT Cameras SDK

7.7.9. XS_ProgressCallback

The XS_ProgressCallback is the prototype of the callback function passed to the
XsCalibrateNoiseReduction routine. The callback is called by the driver during the
calibration and allows the user to show the calibration progress.

typedef void (XSTREAMAPI *XS ProgressCallback)
(

void *pUserData,

XSULONG32 nProgress,

XSULONG32 nCount

Members

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
nProgress

It specifies the current progress index.

nCount

It specifies the total progress count.

Reference Manual 245

IDT Cameras SDK

7.7.10. XS_AnnouncementCallback

The XS_AnnouncementCallback is the prototype of the callback function passed to the
XsSetAnnouncementCallback routine.

typedef void (XSTREAMAPI *XS AnnouncementCallback)
(

void *pUserData,

char *pszAnnouncement

)7

Members

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
pszAnnouncement

It specifies the announcement message zero-terminated string.

246 Reference Manual

IDT Cameras SDK

7.711. XS_StreamingCallback

XS_StremingCallback is the format of the callback function passed to
XsConfigureWriteToDisk routine. The callback is called when write to disk is enabled and
raw data is saved to the local disk. It also returns the amount of available DDR. The
process should be stopped when this amount is too low and override may occur.

typedef void (XSTREAMAPI *XS StreamingCallback)
(

void *pUserData,

XSULONG32 nParaml,

XSULONG32 nParam2,

XSULONG32 nErrCode

Members

pUserData

Specifies a parameter passed to the callback routine, it may be a pointer to user data.
nParam1

It specifies the total number of frame saved.

nParam2

It specifies the percentage of available DDR buffer (0 to 1000). If this value goes below
200 override may occur.

nErrCode

It specifies the error code when something wrong happens. It returns
XS_E _W2D_ OVERRUN if DDR buffer overrun happens, otherwise 0.

Reference Manual 247

	1. Overview
	1.1. Directories structure
	1.2. Supported cameras
	1.3. Redistributable Files
	1.4. Camera calibration file distribution (XS, XS-Stick, PCIe, M)

	2. Using the SDK
	2.1. Overview
	2.1.1. Programming Languages
	2.1.2. 64 Bit Programming
	2.1.3. MAC OSX Programming
	2.1.4. Types
	2.1.5. Example

	2.2. Detect a camera and open it
	2.2.1. Load/Unload the driver
	2.2.2. Enumerate/Open a camera
	2.2.3. Camera pre-configuration
	2.2.4. Camera speed grades
	2.2.5. Camera misc capabilities

	2.3. Camera configuration
	2.3.1. Read/Write the camera configuration
	2.3.2. Read/Write in camera flash memory

	2.4. Camera parameters
	2.4.1. Frame rate and exposure
	2.4.2. Pixel depth
	2.4.3. Image quality
	2.4.4. White Balance / Color Balance
	2.4.5. Resolution and Region of Interest (ROI)
	2.4.6. Record modes
	2.4.7. Synchronization modes
	2.4.8. Triggering
	2.4.9. Sync Out modes
	2.4.10. Pixel Gain
	2.4.11. Look-up Table (LUT)
	2.4.12. Auto-exposure
	2.4.13. HDMI/SDI output and Video modes
	2.4.14. Binning

	2.5. Image Grab in camera or computer DDR
	2.5.1. Asynchronous Live
	2.5.2. Synchronous Live
	2.5.3. Image Grab in camera memory
	2.5.4. Multiple Acquisitions in camera memory
	2.5.5. Image Grab in computer memory (streaming cameras)
	2.5.6. Read images acquired in normal or circular mode

	2.6. Image grab in camera SSD
	2.6.1. SSD Backup mode
	2.6.2. SSD Streaming mode
	2.6.3. Read images from SSD

	2.7. Image Streaming to disk (streaming cameras)
	2.8. RAW files and virtual cameras
	2.8.1. Virtual cameras
	2.8.2. Save data in RAW format
	2.8.3. Read data from RAW files

	2.9. Miscellaneous
	2.9.1. Bayer mode in color cameras
	2.9.2. Read data from a BROC session
	2.9.3. IRIG/GPS data
	2.9.4. Motorized Lens support
	2.9.5. Camera calibration (Background and PSC)

	2.10. Legacy cameras
	2.10.1. Enumerate and Open X cameras (GE)
	2.10.2. Asynchronous operations
	2.10.3. N cameras memory management (non pipeline)
	2.10.4. Trigger and Sync in cameras with two BNC
	2.10.5. Plus™ Mode
	2.10.6. XDR™ Mode

	3. SDK Reference
	3.1. Initialization Functions
	3.1.1. Overview: Initialization functions
	3.1.2. XsGetVersion
	3.1.3. XsLoadDriver
	3.1.4. XsUnloadDriver
	3.1.5. XsEnumCameras
	3.1.6. XsPreConfigCamera
	3.1.7. XsOpenCamera
	3.1.8. XsOpenRawCamera
	3.1.9. XsCloseCamera

	3.2. Configuration Functions
	3.2.1. Overview: Configuration functions
	3.2.2. XsGetCameraInfo
	3.2.3. XsSetCameraInfo
	3.2.4. XsReadDefaultSettings
	3.2.5. XsReadCameraSettings
	3.2.6. XsRefreshCameraSettings
	3.2.7. XsValidateCameraSettings
	3.2.8. XsReadSettingsFromFlash
	3.2.9. XsWriteSettingsToFlash
	3.2.10. XsQueueCameraSettings
	3.2.11. XsSetParameter
	3.2.12. XsGetParameter
	3.2.13. XsGetParameterAttribute
	3.2.14. XsCalibrateNoiseReduction
	3.2.15. XsReset
	3.2.16. XsReadUserDataFromFlash
	3.2.17. XsWriteUserDataToFlash
	3.2.18. XsReadCameraSettingsArray

	3.3. Preview Mode Grab Functions
	3.3.1. Overview: Preview Mode Grab functions
	3.3.2. XsSynchGrab
	3.3.3. XsQueueOneFrame (deprecated)
	3.3.4. XsLive
	3.3.5. XsAbort

	3.4. Camera Memory Grab Functions
	3.4.1. Overview: Camera Memory Mode Grab functions
	3.4.2. XsMemoryStartGrab
	3.4.3. XsMemoryStopGrab
	3.4.4. XsMemoryPreview
	3.4.5. XsMemoryReadFrame
	3.4.6. XsMemoryDownloadRawFrame
	3.4.7. XsMemoryReadTriggerPosition
	3.4.8. XsGetAddressList (N-series)
	3.4.9. XsEraseMemory
	3.4.10. XsTrigger
	3.4.11. XsGetBrocParameters
	3.4.12. XsMemoryReadFromDisk
	3.4.13. XsEraseDisk

	3.5. Miscellaneous Functions
	3.5.1. Overview: Miscellaneous functions
	3.5.2. XsGetHardwareError
	3.5.3. XsReadGPSTiming
	3.5.4. XsEnableDiagnosticTrace
	3.5.5. XsEnableRawMode
	3.5.6. XsGetCameraStatus
	3.5.7. XsSetAnnouncementCallback
	3.5.8. XsReadBorderData (HG)
	3.5.9. XsAttach
	3.5.10. XsConfigureWriteToDisk
	3.5.11. XsReadToVideo
	3.5.12. XsLoadLookupTable
	3.5.13. XsVideoPlayback

	4. LabVIEW™ Interface Reference
	4.1. Overview
	4.2. Initialization VIs
	4.2.1. Overview: Initialization VIs
	4.2.2. Enum Cameras
	4.2.3. Open Camera
	4.2.4. Open Raw Camera
	4.2.5. Close Camera

	4.3. Configuration VIs
	4.3.1. Overview: Configuration VIs
	4.3.2. Get Info
	4.3.3. Get Parameter
	4.3.4. Set Parameter
	4.3.5. Send Config

	4.4. Camera Memory Acquisition VIs
	4.4.1. Overview
	4.4.2. Synch Grab
	4.4.3. Memory Start Grab
	4.4.4. Memory Stop Grab
	4.4.5. Memory Grab Ready
	4.4.6. Memory Preview
	4.4.7. Memory Read Data
	4.4.8. Memory Read Trigger Position
	4.4.9. Memory Erase
	4.4.10. Get BROC parameters
	4.4.11. Trigger

	4.5. Miscellaneous VIs
	4.5.1. Overview: Miscellaneous VIs
	4.5.2. Reset
	4.5.3. Read GPS Timing
	4.5.4. Enable Diag Trace
	4.5.5. Image To Picture
	4.5.6. Get Error

	4.6. How to use the VIs
	4.6.1. Opening and closing a camera
	4.6.2. Configuring a camera
	4.6.3. Acquiring images in real time
	4.6.4. Acquiring images in camera memory
	4.6.5. Error handling

	4.7. Sample VIs
	4.7.1. 1_enum_cameras
	4.7.2. 2_get_camera_info
	4.7.3. 3_image_live
	4.7.4. 4_image_live_error_check
	4.7.5. 5_image_live_with_parameters
	4.7.6. 6_image_acquire
	4.7.7. 7_misc
	4.7.8. 8_open_raw_file

	5. MATLAB™ Interface Reference
	5.1. Overview
	5.2. Initialization Functions
	5.2.1. Overview: Initialization functions
	5.2.2. Version
	5.2.3. SetNetAdapterIPAddress
	5.2.4. EnumCameras
	5.2.5. InitPCIeMemory
	5.2.6. OpenCamera
	5.2.7. OpenRawCamera
	5.2.8. CloseCamera

	5.3. Configuration functions
	5.3.1. Overview: Configuration functions
	5.3.2. GetCameraInfo
	5.3.3. GetParameter
	5.3.4. SetParameter
	5.3.5. SendCfg

	5.4. Camera Memory Acquisition Functions
	5.4.1. Overview: Camera Memory Acquisition Functions
	5.4.2. SynchGrab
	5.4.3. MemoryStartGrab
	5.4.4. MemoryStopGrab
	5.4.5. MemoryPreview
	5.4.6. MemoryReadData
	5.4.7. MemoryDownloadRawFrame
	5.4.8. MemoryReadTriggerPosition
	5.4.9. MemoryErase
	5.4.10. GetBrocParameters
	5.4.11. GrabIsReady
	5.4.12. Trigger

	5.5. Miscellaneous Functions
	5.5.1. Overview: Miscellaneous Functions
	5.5.2. Reset
	5.5.3. ReadGPSTiming
	5.5.4. EnableDiagnosticTrace

	5.6. How to program with the Interface functions
	5.6.1. Opening and closing a camera
	5.6.2. Configuring a camera
	5.6.3. Previewing images in real time
	5.6.4. Acquiring images in camera memory
	5.6.5. Error handling

	5.7. Examples
	5.7.1. CamEnum
	5.7.2. CamGetInfo
	5.7.3. CamReadParam
	5.7.4. CamImageSnap
	5.7.5. CamRecAndSave
	5.7.6. CamLiveRec
	5.7.7. CamRawRead

	6. RAW Reader Library
	6.1. Overview
	6.2. Program Interface Reference
	6.2.1. XrGetVersion
	6.2.2. XrOpen
	6.2.3. XrClose
	6.2.4. XrReadInfo
	6.2.5. XrReadAdvancedInfo
	6.2.6. XrReadFrame

	7. Appendix
	7.1. Appendix A - Return Codes
	7.2. Appendix B – Hardware Error Codes
	7.3. Appendix C – Information Parameters
	7.4. Appendix D – Camera Parameters
	7.5. Appendix E – Camera Announcements
	7.6. Appendix F – Data types
	7.6.1. XS_CAM_MODEL
	7.6.2. XS_ENUM_FLT
	7.6.3. XS_LINK_TYPE
	7.6.4. XS_SNS_TYPE
	7.6.5. XS_CFA_PATTERN
	7.6.6. XS_FG_TYPE
	7.6.7. XS_SNS_MODEL
	7.6.8. XS_REVISION
	7.6.9. XS_MISC_CAPS
	7.6.10. XS_PRE_PARAM
	7.6.11. XS_STATUS
	7.6.12. XS_EXP_MODE
	7.6.13. XS_REC_MODE
	7.6.14. XS_SYNCIN_CFG
	7.6.15. XS_SYNCOUT_CFG
	7.6.16. XS_SYNCOUT_ALIGN
	7.6.17. XS_TRIGIN_CFG
	7.6.18. XS_MTRIG_CFG
	7.6.19. XS_IMG_FMT
	7.6.20. XS_CI_MODE
	7.6.21. XS_SENSOR_GAIN
	7.6.22. XS_PIX_GAIN
	7.6.23. XS_LUT
	7.6.24. XS_LUT_MASK
	7.6.25. XS_BINNING
	7.6.26. XS_HDMI_MODE
	7.6.27. XS_VIDEO_MODE
	7.6.28. XS_VIDEO_PB
	7.6.29. XS_PREV_MODE
	7.6.30. XS_LIVE
	7.6.31. XS_CALLBACK_FLAGS
	7.6.32. XS_CALIB_OPCODE
	7.6.33. XS_DGR_SIZE
	7.6.34. XS_PR_OP
	7.6.35. XS_MARKER_CFG
	7.6.36. XS_CLOCK_SPEED
	7.6.37. XS_HD_ROI
	7.6.38. XS_HD_ZOOM
	7.6.39. XS_ROT_ANGLE
	7.6.40. XS_FLIP
	7.6.41. XS_ATTRIBUTE
	7.6.42. XS_JPEG
	7.6.43. XS_BATTERY
	7.6.44. XS_LENS_INFO
	7.6.45. XS_LENS_CMD
	7.6.46. XS_ERROR
	7.6.47. XS_INFO
	7.6.48. XS_PARAM

	7.7. Appendix G – Structures
	7.7.1. XS_SETTINGS
	7.7.2. XS_ENUMITEM
	7.7.3. XS_FRAME
	7.7.4. XS_BROC_SECTION
	7.7.5. XS_BROC
	7.7.6. XS_GPSTIMING
	7.7.7. XS_W2DCFG
	7.7.8. XS_AsyncCallback
	7.7.9. XS_ProgressCallback
	7.7.10. XS_AnnouncementCallback
	7.7.11. XS_StreamingCallback

